荧光
化学
荧光团
纳米团簇
铜
核化学
有机化学
量子力学
物理
作者
Huiwen Wang,Xukai Liu,Xiulin Wang,Ping Qiu,Pengjun Li
标识
DOI:10.1016/j.saa.2023.123796
摘要
A novel ratio fluorescent and colorimetric dual-signal sensing platform for detecting glyphosate based on blue carbon dots (bCDs) combined with ZIF/CuNCs nanomaterials that encapsulate copper nanoclusters (CuNCs) in a metal-organic framework (MOF). In principle, the immobilization of Cu2+ in ZIF/CuNCs results in complexation with imidazole in ZIF, leading to fluorescence quenching of ZIF/CuNCs, while the reference fluorophore bCDs remains unaffected. In addition, the colorimetric sensing strategy was based on the efficient peroxidase-like activity of bCDs binding to Cu2+, catalyzing H2O2 to generate OH. Under this condition, TMB could be oxidized to form blue oxTMB. However, when glyphosate was involved in the system, the fluorescence of ZIF/CuNCs was restored upon due to the strong chelation between Cu2+ and glyphosate, while the peroxidase-like activity of bCDs/Cu2+ decreased and resulted in the generation of fewer oxTMB, accompanied by a lighter blue color. The sensing platform was successfully applied to the determination of glyphosate in real samples of lake water and cabbage, demonstrating reliable and sensitive performance in practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI