已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved target detection method based on YOLOv5 in natural orchard environments

果园 聚类分析 稳健性(进化) 瓶颈 计算机视觉 数据库扫描 计算机科学 模式识别(心理学) 人工智能 生物 模糊聚类 树冠聚类算法 生物化学 化学 园艺 基因 嵌入式系统
作者
Jiachuang Zhang,Mimi Tian,Zengrong Yang,Junhui Li,Longlian Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108780-108780 被引量:10
标识
DOI:10.1016/j.compag.2024.108780
摘要

The recognition and localization of fruit tree trunks in orchard are important for orchard operation robots, which are the bases for automatic navigation, fruit tree spraying and fertilization etc. A method was proposed based on machine vision to detect target objects such as fruit tree trunks, person and supporters in orchard by improving the YOLOv5 deep learning algorithm in this paper, which is applicable to the recognition tasks in natural orchard environments. Firstly, 1354 images of the natural orchard collected by camera were image enhanced, weather effects such as rain, snow, bright light, shadow and fog were added to expand the dataset and to increase the robustness of the model. Secondly, the original YOLOv5 model was improved by replacing the Bottleneck network in the C3 module with the lightweight GhostNet V2 to reduce the network parameters, and changing the box loss function CIoU to SIoU in the loss function to make the regression of the detection box more accurate, and coordinate attention mechanism (CA) was added to the network to reduce the interference of useless background information in images. Before training, pre-anchor boxes were generated by using IoU-based K-means clustering, after that the dataset was fed into the improved YOLOv5 for training, and the trained model was used to detect the trunks. Finally, weighted boxes fusion (WBF) was used instead of the non-maximum suppression (NMS) in this paper for the output of the detection boxes. Then the density-based spatial clustering of applications with noise (DBSCAN) algorithm was used for trunk clustering. The improved target detection method was trained and validated on the experimental dataset. The model size is reduced by 43.6 %, model parameters are reduced by 46.9 %, and the mAP reaches 97.1 %, with an average detection speed of 198.2 ms per image. Compared with the original YOLOv5, the model is more lightweight, the detection accuracy and speed are improved. The improved YOLOv5 is also better than YOLOv3, NanoDet and SSD in terms of combined accuracy and speed, and has similar performance to YOLO_MobileNet in orchard dataset. The experimental results show that the improved YOLOv5 target detection model proposed in this paper is lightweight while still having better detection accuracy and detection speed in complex environments, and the model is small enough to be deployed to mobile or low-performance terminals for target detection in natural orchard environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙煜驳回了AAAAA应助
刚刚
香蕉觅云应助ZJX采纳,获得10
1秒前
酸辣完成签到 ,获得积分10
6秒前
雷锋完成签到,获得积分10
8秒前
9秒前
懒癌晚期完成签到,获得积分10
10秒前
ixueyi完成签到,获得积分10
10秒前
YOLO完成签到 ,获得积分10
11秒前
搜集达人应助务实大雁采纳,获得10
12秒前
Felix发布了新的文献求助10
12秒前
12秒前
清宁亦无拘完成签到 ,获得积分10
16秒前
浮生完成签到 ,获得积分10
17秒前
ZJX发布了新的文献求助10
17秒前
rrrrrrry发布了新的文献求助10
19秒前
852应助yj采纳,获得10
20秒前
21秒前
吃的饭广泛完成签到,获得积分10
21秒前
Wsyyy完成签到 ,获得积分10
24秒前
Hyp完成签到 ,获得积分10
25秒前
务实大雁发布了新的文献求助10
26秒前
26秒前
ZJX完成签到,获得积分10
26秒前
科研通AI5应助一早采纳,获得10
27秒前
28秒前
畅快枕头完成签到 ,获得积分10
29秒前
31秒前
黎乐荷发布了新的文献求助10
33秒前
77完成签到 ,获得积分10
33秒前
怕黑鲂完成签到 ,获得积分10
37秒前
江上游完成签到 ,获得积分10
38秒前
yj发布了新的文献求助10
38秒前
fusheng完成签到 ,获得积分10
38秒前
暗号完成签到 ,获得积分10
42秒前
吃的饭广泛应助yishan101采纳,获得20
48秒前
大意的皓轩完成签到 ,获得积分10
50秒前
樱桃苏打水完成签到,获得积分10
51秒前
55秒前
务实大雁完成签到,获得积分20
58秒前
吕佩发布了新的文献求助30
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444742
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848