亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-knowledge enhanced graph convolution for learning resource recommendation

计算机科学 图形 资源(消歧) 卷积(计算机科学) 理论计算机科学 人工智能 计算机网络 人工神经网络
作者
Yao Dong,Yuxi Liu,Yongfeng Dong,Y. Samuel Wang,Min Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:291: 111521-111521 被引量:8
标识
DOI:10.1016/j.knosys.2024.111521
摘要

In recent years, E-learning has gained immense popularity as a prominent mode of education. However, accurately recommending learning resources from a vast amount of data remains a significant challenge. This study addresses two primary challenges impacting recommendation performance. Firstly, an imbalance exists between the abundance of available learning resources and the limited interaction behavior of learners. Secondly, the existing algorithms often overlook dynamic preference information, focusing primarily on learners’ short-term, static preferences only by learning interactive behavior but disregarding the multi-correlation between learning resources and learners. To tackle these challenges, we propose MkEGC (Multi-knowledge Enhanced Graph Convolution), a novel framework for learning resource recommendation. We approach the recommendation process as a Markov decision process. Initially, we construct a dual knowledge graph convolutional network, operating in learning resource-knowledge and learner-knowledge domains. This network facilitates the extraction of vector features from learning resources, enhances the learner vector representation, and captures higher-order preferences. Subsequently, we design hierarchical and attention weighting strategies to effectively extract latent hierarchical information from the knowledge graph. Finally, we integrate the learning resource state, the learning interaction state, and the sequence state to represent a multi-dimensional learner-state within the Markov decision framework, enabling prise learning resource recommendations. To validate the effectiveness of MkEGC, we conduct extensive experiments, comparing multiple sets of metrics with six state-of-the-art recommendation algorithms, utilizing two real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
草木发布了新的文献求助10
9秒前
zzz发布了新的文献求助10
15秒前
15秒前
18秒前
31秒前
草木发布了新的文献求助10
34秒前
科研通AI6应助雨jia采纳,获得10
46秒前
草木发布了新的文献求助10
51秒前
51秒前
草木发布了新的文献求助10
1分钟前
1分钟前
草木发布了新的文献求助10
1分钟前
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助无奈樱采纳,获得10
1分钟前
1分钟前
草木发布了新的文献求助10
2分钟前
2分钟前
MinQi完成签到,获得积分10
2分钟前
草木发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
草木发布了新的文献求助10
2分钟前
2分钟前
Raunio完成签到,获得积分10
2分钟前
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
草木发布了新的文献求助10
2分钟前
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494056
求助须知:如何正确求助?哪些是违规求助? 4591933
关于积分的说明 14434988
捐赠科研通 4524580
什么是DOI,文献DOI怎么找? 2478850
邀请新用户注册赠送积分活动 1463796
关于科研通互助平台的介绍 1436645