Introduction to AAV ‐based in vivo Gene Therapy

体内 遗传增强 基因 计算生物学 生物 遗传学
作者
Oscar G. Segurado
标识
DOI:10.1002/9781119852810.ch1
摘要

Chapter 1 Introduction to AAV -based in vivo Gene Therapy Oscar Segurado, Oscar Segurado ASC Therapeutics, Milpitas, CA, USASearch for more papers by this author Oscar Segurado, Oscar Segurado ASC Therapeutics, Milpitas, CA, USASearch for more papers by this author Book Editor(s):Yanmei Lu, Yanmei Lu Sangamo Therapeutics, Brisbane, California, United StatesSearch for more papers by this authorBoris Gorovits, Boris Gorovits Sana Biotechnology, Cambridge, Massachusetts, United StatesSearch for more papers by this author First published: 16 February 2024 https://doi.org/10.1002/9781119852810.ch1 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Gene therapies are advancing rapidly as novel therapeutic modalities, providing functional cures for monogenic diseases, and more recently non-monogenic diseases, such as cancers, neurological, and cardiovascular diseases. These conditions significantly impact the healthcare system due to their need for continual, complex, and costly treatments and interventions. This chapter overviews the biotechnological advances in adeno-associated virus (AAV) vectors for in vivo gene therapies, covering key technologies for in vivo gene editing. It describes critical elements of AAV optimization for efficient delivery of therapeutic genes, addressing efficacy, safety, immunogenicity, delivery, manufacturing, regulatory approvals, and the challenges and risks of AAV-based gene therapy, including malignancy and immunogenicity. Furthermore, it reviews the incorporation of translational biomarkers found during discovery and preclinical studies of gene therapies into the clinical development program. The rapid progress implies more homogeneous and streamlined development programs, leading to lower manufacturing costs, more affordability for insurance companies, and increased access for patients. References Watson , J.D. and Crick , F.H. ( 1953 ). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid . Nature 171 ( 4356 ): 737 – 738 . 10.1038/171737a0 CASPubMedWeb of Science®Google Scholar Franklin , R.E. and Gosling , R.G. ( 1953 ). Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate . Nature 172 ( 4369 ): 156 – 157 . 10.1038/172156a0 CASPubMedWeb of Science®Google Scholar Atchison , R.W. , Casto , B.C. , and Hammon , W.M. ( 1965 ). Adenovirus-associated defective virus particles . Science 149 ( 3685 ): 754 – 756 . 10.1126/science.149.3685.754 CASPubMedWeb of Science®Google Scholar Terheggen , H.G. , Lowenthal , A. , Lavinha , F. et al. ( 1975 ). Unsuccessful trial of gene replacement in arginase deficiency . Z. Kinderheilkd. 119 ( 1 ): 1 – 3 . CASPubMedGoogle Scholar Tabin , C.J. , Hoffmann , J.W. , Goff , S.P. et al. ( 1982 ). Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene . Mol. Cell. Biol. 2 ( 4 ): 426 – 436 . CASPubMedWeb of Science®Google Scholar Robert-Guroff , M. , Markham , P.D. , Popovic , M. et al. ( 1985 ). Isolation, characterization, and biological effects of the first human retroviruses: the human T-lymphotropic retrovirus family . Curr. Top. Microbiol. Immunol. 115 : 7 – 31 . CASPubMedWeb of Science®Google Scholar Bodine , D.M. , Karlsson , S. , Papayannopoulou , T. et al. ( 1989 ). Introduction and expression of human beta globin genes into primitive murine hematopoietic progenitor cells by retrovirus mediated gene transfer . Prog. Clin. Biol. Res. 319 : 589 – 599 . discussion 600. CASPubMedGoogle Scholar Hermonat , P.L. and Muzyczka , N. ( 1984 ). Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells . Proc. Natl. Acad. Sci. U. S. A. 81 ( 20 ): 6466 – 6470 . 10.1073/pnas.81.20.6466 CASPubMedWeb of Science®Google Scholar Johnson , I.S. ( 1983 ). Human insulin from recombinant DNA technology . Science 219 ( 4585 ): 632 – 637 . 10.1126/science.6337396 CASPubMedWeb of Science®Google Scholar Miller , J. , McLachlan , A.D. , and Klug , A. ( 1985 ). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes . EMBO J. 4 ( 6 ): 1609 – 1614 . 10.1002/j.1460-2075.1985.tb03825.x CASPubMedWeb of Science®Google Scholar Beardsley , T. ( 1986 ). Genetic engineering. Hepatitis vaccine wins approval . Nature 322 ( 6078 ): 396 . 10.1038/322396a0 CASPubMedWeb of Science®Google Scholar Palca , J. ( 1988 ). James Watson to head NIH human genome project . Nature 335 ( 6187 ): 193 . 10.1038/335193a0 CASPubMedWeb of Science®Google Scholar Rhodes , C.A. , Pierce , D.A. , Mettler , I.J. et al. ( 1988 ). Genetically transformed maize plants from protoplasts . Science 240 ( 4849 ): 204 – 207 . 10.1126/science.2832947 CASPubMedWeb of Science®Google Scholar Anderson , W.F. ( 1990 ). September 14, 1990: the beginning . Hum. Gene Ther. 1 ( 4 ): 371 – 372 . 10.1089/hum.1990.1.4-371 CASPubMedWeb of Science®Google Scholar Campbell , K.H. et al. ( 1996 ). Sheep cloned by nuclear transfer from a cultured cell line . Nature 380 ( 6569 ): 64 – 66 . 10.1038/380064a0 CASPubMedWeb of Science®Google Scholar Hanna , E. et al. ( 2017 ). Gene therapies development: slow progress and promising prospect . J. Mark. Access Health Policy 5 ( 1 ): 1265293 . 10.1080/20016689.2017.1265293 PubMedGoogle Scholar Wang , D. , Wang , K. , and Cai , Y. ( 2020 ). An overview of development in gene therapeutics in China . Gene Ther. 27 ( 7–8 ): 338 – 348 . 10.1038/s41434-020-0163-7 CASPubMedWeb of Science®Google Scholar MacGregor , R.R. and Clinical protocol. ( 2001 ). A phase 1 open-label clinical trial of the safety and tolerability of single escalating doses of autologous CD4 T cells transduced with VRX496 in HIV-positive subjects . Hum. Gene Ther. 12 ( 16 ): 2028 – 2029 . CASPubMedGoogle Scholar Takahashi , K. , Okita , K. , Nakagawa , M. et al. ( 2007 ). Induction of pluripotent stem cells from fibroblast cultures . Nat. Protoc. 2 ( 12 ): 3081 – 3089 . 10.1038/nprot.2007.418 CASPubMedWeb of Science®Google Scholar Cong , L. , Ran , F.A. , Cox , D. et al. ( 2013 ). Multiplex genome engineering using CRISPR/Cas systems . Science 339 ( 6121 ): 819 – 823 . 10.1126/science.1231143 CASPubMedWeb of Science®Google Scholar Lu , Y. , Xue , J. , Deng , T. et al. ( 2020 ). Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer . Nat. Med. 26 ( 5 ): 732 – 740 . 10.1038/s41591-020-0840-5 CASPubMedWeb of Science®Google Scholar Srivastava , A. , Lusby , E.W. , and Berns , K.I. ( 1983 ). Nucleotide sequence and organization of the adeno-associated virus 2 genome . J. Virol. 45 ( 2 ): 555 – 564 . 10.1128/jvi.45.2.555-564.1983 CASPubMedWeb of Science®Google Scholar Sonntag , F. , Schmidt , K. , and Kleinschmidt , J.A. ( 2010 ). A viral assembly factor promotes AAV2 capsid formation in the nucleolus . Proc. Natl. Acad. Sci. U. S. A. 107 ( 22 ): 10220 – 10225 . 10.1073/pnas.1001673107 CASPubMedWeb of Science®Google Scholar Lusby , E. , Fife , K.H. , and Berns , K.I. ( 1980 ). Nucleotide sequence of the inverted terminal repetition in adeno-associated virus DNA . J. Virol. 34 ( 2 ): 402 – 409 . 10.1128/jvi.34.2.402-409.1980 CASPubMedWeb of Science®Google Scholar Xie , Q. , Bu , W. , Bhatia , S. et al. ( 2002 ). The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy . Proc. Natl. Acad. Sci. U. S. A. 99 ( 16 ): 10405 – 10410 . 10.1073/pnas.162250899 CASPubMedWeb of Science®Google Scholar Hoque , M. , Ishizu , K. , Matsumoto , A. et al. ( 1999 ). Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation . J. Virol. 73 ( 9 ): 7912 – 7915 . 10.1128/JVI.73.9.7912-7915.1999 CASPubMedWeb of Science®Google Scholar Wu , P. , Xiao , W. , Conlon , T. et al. ( 2000 ). Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism . J. Virol. 74 ( 18 ): 8635 – 8647 . 10.1128/JVI.74.18.8635-8647.2000 CASPubMedWeb of Science®Google Scholar Hermonat , P.L. , Labow , M.A. , Wright , R. et al. ( 1984 ). Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants . J. Virol. 51 ( 2 ): 329 – 339 . 10.1128/jvi.51.2.329-339.1984 CASPubMedWeb of Science®Google Scholar Wu , Z. , Asokan , A. , and Samulski , R.J. ( 2006 ). Adeno-associated virus serotypes: vector toolkit for human gene therapy . Mol. Ther. 14 ( 3 ): 316 – 327 . 10.1016/j.ymthe.2006.05.009 CASPubMedWeb of Science®Google Scholar Mietzsch , M. , Grasse , S. , Zurawski , C. et al. ( 2014 ). OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy . Hum. Gene Ther. 25 ( 3 ): 212 – 222 . 10.1089/hum.2013.184 CASPubMedWeb of Science®Google Scholar Schnepp , B.C. , Jensen , R.L. , Chen , C. et al. ( 2005 ). Characterization of adeno-associated virus genomes isolated from human tissues . J. Virol. 79 ( 23 ): 14793 – 14803 . 10.1128/JVI.79.23.14793-14803.2005 CASPubMedWeb of Science®Google Scholar Chadeuf , G. , Favre , D. , Tessier , J. et al. ( 2000 ). Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome . J. Gene Med. 2 ( 4 ): 260 – 268 . 10.1002/1521-2254(200007/08)2:4<260::AID-JGM111>3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar Sonntag , F. , Bleker , S. , Leuchs , B. et al. ( 2006 ). Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus . J. Virol. 80 ( 22 ): 11040 – 11054 . 10.1128/JVI.01056-06 CASPubMedWeb of Science®Google Scholar Douar , A.M. , Poulard , K. , Stockholm , D. et al. ( 2001 ). Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation . J. Virol. 75 ( 4 ): 1824 – 1833 . 10.1128/JVI.75.4.1824-1833.2001 CASPubMedWeb of Science®Google Scholar Yan , Z. , Zak , R. , Zhang , Y. et al. ( 2004 ). Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia . J. Virol. 78 ( 6 ): 2863 – 2874 . 10.1128/JVI.78.6.2863-2874.2004 CASPubMedWeb of Science®Google Scholar Nicolson , S.C. and Samulski , R.J. ( 2014 ). Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus . J. Virol. 88 ( 8 ): 4132 – 4144 . 10.1128/JVI.02660-13 CASPubMedWeb of Science®Google Scholar Li , C. , He , Y. , Nicolson , S. et al. ( 2013 ). Adeno-associated virus capsid antigen presentation is dependent on endosomal escape . J. Clin. Invest. 123 ( 3 ): 1390 – 1401 . 10.1172/JCI66611 CASPubMedWeb of Science®Google Scholar Wang , Z. , Ma , H. , Li , J. et al. ( 2003 ). Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo . Gene Ther. 10 ( 26 ): 2105 – 2111 . 10.1038/sj.gt.3302133 CASPubMedWeb of Science®Google Scholar Natkunarajah , M. , Trittibach , P. , McIntosh , J. et al. ( 2008 ). Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8 . Gene Ther. 15 ( 6 ): 463 – 467 . 10.1038/sj.gt.3303074 CASPubMedWeb of Science®Google Scholar Nathwani , A.C. , Tuddenham , E.G.D. , Rangarajan , S. et al. ( 2011 ). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B . N. Engl. J. Med. 365 ( 25 ): 2357 – 2365 . 10.1056/NEJMoa1108046 CASPubMedWeb of Science®Google Scholar Kessler , P.D. , Podsakoff , G.M. , Chen , X. et al. ( 1996 ). Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein . Proc. Natl. Acad. Sci. U. S. A. 93 ( 24 ): 14082 – 14087 . 10.1073/pnas.93.24.14082 CASPubMedWeb of Science®Google Scholar Mullard , A. ( 2021 ). Gene therapy community grapples with toxicity issues, as pipeline matures . Nat. Rev. Drug Discov. 20 ( 11 ): 804 – 805 . 10.1038/d41573-021-00164-x CASPubMedWeb of Science®Google Scholar Nathwani , A.C. , Reiss , U.M. , Tuddenham , E.G.D. et al. ( 2014 ). Long-term safety and efficacy of factor IX gene therapy in hemophilia B . N. Engl. J. Med. 371 ( 21 ): 1994 – 2004 . 10.1056/NEJMoa1407309 CASPubMedWeb of Science®Google Scholar Calcedo , R. , Morizono , H. , Wang , L. et al. ( 2011 ). Adeno-associated virus antibody profiles in newborns, children, and adolescents . Clin. Vaccine Immunol. 18 ( 9 ): 1586 – 1588 . 10.1128/CVI.05107-11 CASPubMedWeb of Science®Google Scholar Mussolino , C. , Alzubi , J. , Fine , E.J. et al. ( 2014 ). TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity . Nucleic Acids Res. 42 ( 10 ): 6762 – 6773 . 10.1093/nar/gku305 CASPubMedWeb of Science®Google Scholar Guilinger , J.P. , Pattanayak , V. , Reyon , D. et al. ( 2014 ). Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity . Nat. Methods 11 ( 4 ): 429 – 435 . 10.1038/nmeth.2845 CASPubMedWeb of Science®Google Scholar Pattanayak , V. , Lin , S. , Guilinger , J.P. et al. ( 2013 ). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity . Nat. Biotechnol. 31 ( 9 ): 839 – 843 . 10.1038/nbt.2673 CASPubMedWeb of Science®Google Scholar Fu , Y. , Sander , J.D. , Reyon , D. et al. ( 2014 ). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs . Nat. Biotechnol. 32 ( 3 ): 279 – 284 . 10.1038/nbt.2808 CASPubMedWeb of Science®Google Scholar Ran , F.A. , Hsu , P.D. , Lin , C. et al. ( 2013 ). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity . Cell 154 ( 6 ): 1380 – 1389 . 10.1016/j.cell.2013.08.021 CASPubMedWeb of Science®Google Scholar Harmatz , P. , Prada , C.E. , Burton , B.K. et al. ( 2022 ). First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B . Mol. Ther. 30 ( 12 ): 3587 – 3600 . 10.1016/j.ymthe.2022.10.010 CASPubMedWeb of Science®Google Scholar Osborn , M.J. , Starker , C.G. , McElroy , A.N. et al. ( 2013 ). TALEN-based gene correction for epidermolysis bullosa . Mol. Ther. 21 ( 6 ): 1151 – 1159 . 10.1038/mt.2013.56 CASPubMedWeb of Science®Google Scholar Qasim , W. , Zhan , H. , Samarasinghe , S. et al. ( 2017 ). Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells . Sci. Transl. Med. 9 ( 374 ): eaaj2013 . 10.1126/scitranslmed.aaj2013 PubMedWeb of Science®Google Scholar Jain , S. , Shukla , S. , Yang , C. et al. ( 2021 ). TALEN outperforms Cas9 in editing heterochromatin target sites . Nat. Commun. 12 ( 1 ): 606 . 10.1038/s41467-020-20672-5 CASPubMedWeb of Science®Google Scholar Wang , L. , Li , F. , Dang , L. et al. ( 2016 ). In vivo delivery systems for therapeutic genome editing . Int. J. Mol. Sci. 17 ( 5 ): 626 . 10.3390/ijms17050626 PubMedWeb of Science®Google Scholar Barrangou , R. and Doudna , J.A. ( 2016 ). Applications of CRISPR technologies in research and beyond . Nat. Biotechnol. 34 ( 9 ): 933 – 941 . 10.1038/nbt.3659 CASPubMedWeb of Science®Google Scholar Hagedorn , P.H. , Pontoppidan , M. , Bisgaard , T.S. et al. ( 2018 ). Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice . Nucleic Acids Res. 46 ( 11 ): 5366 – 5380 . 10.1093/nar/gky397 CASPubMedWeb of Science®Google Scholar Jackson , A.L. and Linsley , P.S. ( 2010 ). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application . Nat. Rev. Drug Discov. 9 ( 1 ): 57 – 67 . 10.1038/nrd3010 CASPubMedWeb of Science®Google Scholar Barrangou , R. , Fremaux , C. , Deveau , H. et al. ( 2007 ). CRISPR provides acquired resistance against viruses in prokaryotes . Science 315 ( 5819 ): 1709 – 1712 . 10.1126/science.1138140 CASPubMedWeb of Science®Google Scholar Cho , S.W. , Kim , S. , Kim , Y. et al. ( 2014 ). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases . Genome Res. 24 ( 1 ): 132 – 141 . 10.1101/gr.162339.113 CASPubMedWeb of Science®Google Scholar Bae , S. , Park , J. , and Kim , J.S. ( 2014 ). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases . Bioinformatics 30 ( 10 ): 1473 – 1475 . 10.1093/bioinformatics/btu048 CASPubMedWeb of Science®Google Scholar Park , P.J. ( 2009 ). ChIP-seq: advantages and challenges of a maturing technology . Nat. Rev. Genet. 10 ( 10 ): 669 – 680 . 10.1038/nrg2641 CASPubMedWeb of Science®Google Scholar Tsai , S.Q. , Zheng , Z. , Nguyen , N.T. et al. ( 2015 ). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases . Nat. Biotechnol. 33 ( 2 ): 187 – 197 . 10.1038/nbt.3117 CASPubMedWeb of Science®Google Scholar Gabriel , R. , Lombardo , A. , Arens , A. et al. ( 2011 ). An unbiased genome-wide analysis of zinc-finger nuclease specificity . Nat. Biotechnol. 29 ( 9 ): 816 – 823 . 10.1038/nbt.1948 CASPubMedWeb of Science®Google Scholar Gaudelli , N.M. , Komor , A.C. , Rees , H.A. et al. ( 2017 ). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage . Nature 551 ( 7681 ): 464 – 471 . 10.1038/nature24644 CASPubMedWeb of Science®Google Scholar Anzalone , A.V. , Randolph , P.B. , Davis , J.R. et al. ( 2019 ). Search-and-replace genome editing without double-strand breaks or donor DNA . Nature 576 ( 7785 ): 149 – 157 . 10.1038/s41586-019-1711-4 CASPubMedWeb of Science®Google Scholar Zhang , X. , Zhu , B. , Chen , L. et al. ( 2020 ). Dual base editor catalyzes both cytosine and adenine base conversions in human cells . Nat. Biotechnol. 38 ( 7 ): 856 – 860 . 10.1038/s41587-020-0527-y CASPubMedWeb of Science®Google Scholar Kantor , A. , McClements , M.E. , and MacLaren , R.E. ( 2020 ). CRISPR-Cas9 DNA base-editing and prime-editing . Int. J. Mol. Sci. 21 ( 17 ). 10.3390/ijms21176240 PubMedWeb of Science®Google Scholar Sontheimer , E.J. ( 2005 ). Assembly and function of RNA silencing complexes . Nat. Rev. Mol. Cell Biol. 6 ( 2 ): 127 – 138 . 10.1038/nrm1568 CASPubMedWeb of Science®Google Scholar Gil , J. and Esteban , M. ( 2000 ). Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action . Apoptosis 5 ( 2 ): 107 – 114 . 10.1023/A:1009664109241 CASPubMedWeb of Science®Google Scholar Kelleher , A.D. , Cortez-Jugo , C. , Cavalieri , F. et al. ( 2020 ). RNAi therapeutics: an antiviral strategy for human infections . Curr. Opin. Pharmacol. 54 : 121 – 129 . 10.1016/j.coph.2020.09.011 CASPubMedWeb of Science®Google Scholar Goins , W.F. , Huang , S. , Cohen , J.B. et al. ( 2014 ). Engineering HSV-1 vectors for gene therapy . Methods Mol. Biol. 1144 : 63 – 79 . 10.1007/978-1-4939-0428-0_5 CASPubMedGoogle Scholar Kochenderfer , J.N. et al. ( 2013 ). Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation . Blood 122 ( 25 ): 4129 – 4139 . 10.1182/blood-2013-08-519413 CASPubMedWeb of Science®Google Scholar Zincarelli , C. , Soltys , S. , Rengo , G. et al. ( 2008 ). Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection . Mol. Ther. 16 ( 6 ): 1073 – 1080 . 10.1038/mt.2008.76 CASPubMedWeb of Science®Google Scholar Ellis , B.L. , Hirsch , M.L. , Barker , J.C. et al. ( 2013 ). A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype . Virol. J. 10 : 74 . 10.1186/1743-422X-10-74 PubMedWeb of Science®Google Scholar Markusic , D.M. and Herzog , R.W. ( 2012 ). Liver-directed adeno-associated viral gene therapy for hemophilia . J. Genet. Syndr. Gene Ther. 1 : 1 – 9 . PubMedGoogle Scholar Flotte , T.R. ( 2021 ). Liver targeting with rAAV7: balancing tropism with immune profiles . Gene Ther. 28 ( 3-4 ): 115 – 116 . 10.1038/s41434-021-00230-4 CASPubMedWeb of Science®Google Scholar Klein , R.L. , Dayton , R.D. , Tatom , J.B. et al. ( 2008 ). Tau expression levels from various adeno-associated virus vector serotypes produce graded neurodegenerative disease states . Eur. J. Neurosci. 27 ( 7 ): 1615 – 1625 . 10.1111/j.1460-9568.2008.06161.x PubMedWeb of Science®Google Scholar Wang , D. , Zhong , L. , Nahid , M.A. et al. ( 2014 ). The potential of adeno-associated viral vectors for gene delivery to muscle tissue . Expert Opin. Drug Deliv. 11 ( 3 ): 345 – 364 . 10.1517/17425247.2014.871258 CASPubMedWeb of Science®Google Scholar Pipe , S.W. , Gonen-Yaacovi , G. , and Segurado , O.G. ( 2022 ). Hemophilia A gene therapy: current and next-generation approaches . Expert. Opin. Biol. Ther. 22 ( 9 ): 1099 – 1115 . 10.1080/14712598.2022.2002842 CASPubMedWeb of Science®Google Scholar Vandamme , C. , Adjali , O. , and Mingozzi , F. ( 2017 ). Unraveling the complex story of immune responses to AAV vectors trial after trial . Hum. Gene Ther. 28 ( 11 ): 1061 – 1074 . 10.1089/hum.2017.150 CASPubMedWeb of Science®Google Scholar Bartel , M. , Schaffer , D. , and Buning , H. ( 2011 ). Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity . Front. Microbiol. 2 : 204 . 10.3389/fmicb.2011.00204 PubMedWeb of Science®Google Scholar Naso , M.F. , Tomkowicz , B. , Perry , W.L. et al. ( 2017 ). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy . BioDrugs 31 ( 4 ): 317 – 334 . 10.1007/s40259-017-0234-5 CASPubMedWeb of Science®Google Scholar Arabi , F. , Mansouri , V. , and Ahmadbeigi , N. ( 2022 ). Gene therapy clinical trials, where do we go? An overview . Biomed. Pharmacother. 153 : 113324 . 10.1016/j.biopha.2022.113324 PubMedWeb of Science®Google Scholar Lubroth , P. , Colasante , G. , and Lignani , G. ( 2021 ). In vivo genome editing therapeutic approaches for neurological disorders: where are we in the translational pipeline? Front. Neurosci. 15 : 632522 . 10.3389/fnins.2021.632522 PubMedWeb of Science®Google Scholar Roberts , S.A. , Allen , J.D. , and Sigal , E.V. ( 2011 ). Despite criticism of the FDA review process, new cancer drugs reach patients sooner in the United States than in Europe . Health Aff. (Millwood) 30 ( 7 ): 1375 – 1381 . 10.1377/hlthaff.2011.0231 PubMedWeb of Science®Google Scholar Rohiwal , S.S. , Dvorakova , N. , Klima , J. et al. ( 2020 ). Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing . Sci. Rep. 10 ( 1 ): 4619 . 10.1038/s41598-020-61465-6 CASPubMedWeb of Science®Google Scholar Sizikov , A.A. , Kharlamova , M.V. , Nikitin , M.P. et al. ( 2021 ). Nonviral locally injected magnetic vectors for in vivo gene delivery: a review of studies on magnetofection . Nanomaterials (Basel) 11 ( 5 ): 1078 . 10.3390/nano11051078 CASPubMedWeb of Science®Google Scholar Ran , F.A. , Cong , L. , Yan , W.X. et al. ( 2015 ). In vivo genome editing using Staphylococcus aureus Cas9 . Nature 520 ( 7546 ): 186 – 191 . 10.1038/nature14299 CASPubMedWeb of Science®Google Scholar Chu , W.S. and Ng , J. ( 2021 ). Immunomodulation in administration of rAAV: preclinical and clinical adjuvant pharmacotherapies . Front. Immunol. 12 : 658038 . 10.3389/fimmu.2021.658038 CASPubMedWeb of Science®Google Scholar Cunningham , S.C. , Spinoulas , A. , Carpenter , K.H. et al. ( 2009 ). AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spf(ash) mice . Mol. Ther. 17 ( 8 ): 1340 – 1346 . 10.1038/mt.2009.88 CASPubMedWeb of Science®Google Scholar Bortolussi , G. , Zentillin , L. , Vaníkova , J. et al. ( 2014 ). Life-long correction of hyperbilirubinemia with a neonatal liver-specific AAV-mediated gene transfer in a lethal mouse model of Crigler-Najjar syndrome . Hum. Gene Ther. 25 ( 9 ): 844 – 855 . 10.1089/hum.2013.233 CASPubMedWeb of Science®Google Scholar Wang , L. , Wang , H. , Bell , P. et al. ( 2012 ). Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector . Hum. Gene Ther. 23 ( 5 ): 533 – 539 . 10.1089/hum.2011.183 CASPubMedWeb of Science®Google Scholar Calcedo , R. and Wilson , J.M. ( 2016 ). AAV natural infection induces broad cross-neutralizing antibody responses to multiple AAV serotypes in chimpanzees . Hum. Gene. Ther. Clin. Dev. 27 ( 2 ): 79 – 82 . 10.1089/humc.2016.048 CASPubMedWeb of Science®Google Scholar Chirmule , N. , Xiao , W. , Truneh , A. et al. ( 2000 ). Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle . J. Virol. 74 ( 5 ): 2420 – 2425 . 10.1128/JVI.74.5.2420-2425.2000 CASPubMedWeb of Science®Google Scholar Nathwani , A.C. , Gray , J.T. , McIntosh , J. et al. ( 2007 ). Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates . Blood 109 ( 4 ): 1414 – 1421 . 10.1182/blood-2006-03-010181 CASPubMedWeb of Science®Google Scholar Drug Development for Gene Therapy: Translational Biomarkers, Bioanalysis, and Companion Diagnostics ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
99完成签到,获得积分10
1秒前
2秒前
2秒前
雨er发布了新的文献求助10
2秒前
现代慕梅完成签到,获得积分10
3秒前
3秒前
宇文雨文完成签到 ,获得积分10
3秒前
Jesper完成签到,获得积分20
3秒前
4秒前
隐形荟完成签到 ,获得积分10
4秒前
BLUE-CZY完成签到,获得积分10
4秒前
王王发布了新的文献求助10
4秒前
Mr贱包子完成签到,获得积分10
5秒前
小丸子呀完成签到 ,获得积分10
5秒前
谭一完成签到 ,获得积分10
5秒前
洋洋爱吃枣完成签到 ,获得积分10
6秒前
6秒前
小高发布了新的文献求助10
7秒前
友好慕卉完成签到,获得积分10
8秒前
xxxx完成签到 ,获得积分10
9秒前
BLUE-CZY发布了新的文献求助10
9秒前
心心发布了新的文献求助10
9秒前
9秒前
凤凰应助Esther采纳,获得50
10秒前
黎黎完成签到,获得积分10
10秒前
光亮笑蓝发布了新的文献求助10
11秒前
11秒前
12秒前
Li chun sheng发布了新的文献求助10
12秒前
风中的李白完成签到,获得积分10
13秒前
小高完成签到,获得积分10
13秒前
斯文败类应助沉默初雪采纳,获得10
13秒前
JasonSun完成签到,获得积分10
14秒前
勤劳飞松完成签到,获得积分10
14秒前
自信小丛完成签到 ,获得积分10
14秒前
15秒前
DX完成签到,获得积分10
15秒前
小李完成签到,获得积分10
16秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Cross-Cultural Psychology: Critical Thinking and Contemporary Applications (8th edition) 800
Counseling With Immigrants, Refugees, and Their Families From Social Justice Perspectives pages 800
We shall sing for the fatherland 500
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2377932
求助须知:如何正确求助?哪些是违规求助? 2085325
关于积分的说明 5232204
捐赠科研通 1812490
什么是DOI,文献DOI怎么找? 904420
版权声明 558574
科研通“疑难数据库(出版商)”最低求助积分说明 482820