Image-Level Automatic Data Augmentation for Pedestrian Detection

计算机科学 范畴变量 离群值 数据挖掘 图像(数学) 人工智能 行人检测 集合(抽象数据类型) 异常检测 数据清理 行人 模式识别(心理学) 机器学习 公制(单位) 工程类 运营管理 数据质量 运输工程 程序设计语言
作者
Yunfeng Ma,Min Liu,Yi Tang,Xueping Wang,Yaonan Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12
标识
DOI:10.1109/tim.2023.3336760
摘要

Data augmentation (DA) is a commonly used method to alleviate the problem of detecting occluded pedestrians in crowded scenes. Recently, several dataset-level automatic data augmentation methods have been proposed to search for a set of general DA policies for the entire dataset, which saves a lot of time compared to manually designing DA policies. However, due to the huge differences between each image in pedestrian detection datasets, existing dataset-level augmentation methods cannot automatically adjust DA policies according to the differences between them, which will lead to outlier data and degradation of model performance. Therefore, considering the differences between each image, we propose an image-level automatic data augmentation method that aims to find an optimal DA policy for each image in the dataset according to their respective characteristics. Specifically, we first reformulate the image-level automatic data augmentation method by constructing a search space based on Categorical distribution, within which we specify the probability of operations being sampled according to their respective effectiveness, so that useful operations can be effectively preserved and useless operations can be suppressed. Subsequently, we design an encoding method to recode the index of images and policies, and use the encoded index to closely associate them to achieve a stable matching relationship between images and policies. Finally, a search framework with Bayesian optimization is developed for efficient policy mining. Comprehensive experiments on CrowdHuman and CityPersons datasets show that compared with the commonly used automatic data augmentation method for pedestrian detection, AutoPedestrian, our method takes only 1/14 of the search time, but achieves better detection accuracy. Specifically, we achieve 10.2% MR -2 on CityPersons reasonable subset and 36.8% MR -2 on CrowdHuman dataset, outperforming state-of-the-art methods on CrowdHuman dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MYhang完成签到,获得积分10
刚刚
wxd发布了新的文献求助10
2秒前
2秒前
哈哈发布了新的文献求助10
3秒前
3秒前
西哈哈发布了新的文献求助10
3秒前
科研通AI5应助lili采纳,获得10
3秒前
郑嘻嘻完成签到,获得积分10
3秒前
3秒前
FEI完成签到,获得积分20
3秒前
5秒前
英姑应助顺利的乐枫采纳,获得10
5秒前
5秒前
5秒前
6秒前
木子加y完成签到 ,获得积分10
7秒前
小蘑菇应助Sally采纳,获得10
7秒前
命运的X号完成签到,获得积分10
7秒前
yangyong发布了新的文献求助10
8秒前
8秒前
图图烤肉完成签到,获得积分10
9秒前
ajiaxi完成签到,获得积分10
9秒前
Bruce完成签到,获得积分10
10秒前
英俊的水彤完成签到 ,获得积分10
10秒前
刘金金完成签到,获得积分10
11秒前
11秒前
命运的X号发布了新的文献求助10
11秒前
12秒前
HJJHJH发布了新的文献求助10
12秒前
12秒前
爱听歌的电源完成签到,获得积分10
12秒前
善学以致用应助新的心跳采纳,获得10
12秒前
13秒前
陈梦雨发布了新的文献求助10
14秒前
复杂瑛完成签到,获得积分10
14秒前
14秒前
15秒前
眼睛大世开完成签到 ,获得积分10
15秒前
赤邪发布了新的文献求助10
16秒前
安凉完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794