Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network

期限(时间) 光伏系统 系列(地层学) 时间序列 平滑的 功率(物理) 深度学习 计算机科学 循环神经网络 人工智能 工程类 人工神经网络 电气工程 机器学习 物理 古生物学 量子力学 生物 计算机视觉
作者
Guozhu Li,Chenjun Ding,Naini Zhao,Jiaxing Wei,Yang Guo,Chong Meng,Kailiang Huang,Rongxin Zhu
出处
期刊:Energy [Elsevier BV]
卷期号:293: 130621-130621 被引量:3
标识
DOI:10.1016/j.energy.2024.130621
摘要

Under the background of the global pursuit of carbon neutrality, the trend of photovoltaic power generation replacing traditional thermal power generation is increasingly apparent. To improve the performance of the model in photovoltaic power forecasting, this study proposed a novel deep learning-based model named PLSTNet for ultra-short-term prediction of photovoltaic power over a 5 min time span. This model is a novel dual-path prediction. On one hand, it effectively captures short-term fluctuations in time series data by combining CNN and RNN. On the other hand, it further captures and analyzes long-term trends in fluctuations through the use of a smoothing layer and RNN's recurrent skip layer. In one-step and multi-step forecasting experiments on annual and seasonal datasets, we compared the performance of the PLSTNet model with LSTNet, PHILNet, TCN_GRU, and ResCNN to assess its performance. In one-step and multi-step forecasting using the annual dataset, the MAE of the PLSTNet model is at least 15.5% lower than that of other models. Similarly, for seasonal datasets, the MAE of the PLSTNet model is at least 13.2% lower than other models. The experimental results demonstrate that in various photovoltaic power forecasting scenarios, the PLSTNet model has achieved higher accuracy in ultra-short-term predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
hjhhje完成签到,获得积分10
3秒前
爱学习的瑞瑞子完成签到 ,获得积分10
3秒前
听话的蜡烛完成签到,获得积分10
5秒前
5秒前
xiax03发布了新的文献求助10
6秒前
sisisij发布了新的文献求助10
8秒前
ASDS发布了新的文献求助10
9秒前
追寻梦之完成签到,获得积分10
10秒前
上官若男应助夕子爱科研采纳,获得10
10秒前
11秒前
13秒前
小蘑菇应助李林采纳,获得10
13秒前
minsun完成签到,获得积分10
16秒前
柚皘发布了新的文献求助10
17秒前
cdercder应助兮豫采纳,获得10
17秒前
科研通AI5应助Suchus采纳,获得30
18秒前
cdercder应助csq采纳,获得10
18秒前
19秒前
Johnson完成签到 ,获得积分10
22秒前
roking发布了新的文献求助10
22秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
小虫学长应助科研通管家采纳,获得20
24秒前
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
26秒前
LYQ完成签到,获得积分10
26秒前
gongranpi发布了新的文献求助10
28秒前
情怀应助果果采纳,获得20
28秒前
xch发布了新的文献求助10
29秒前
科研助手6应助hjhhje采纳,获得20
30秒前
充电宝应助蜗居采纳,获得10
34秒前
包子完成签到,获得积分10
34秒前
力劈华山完成签到,获得积分10
34秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757