Temporal Double Graph Convolutional Network for CO and CO Prediction in Blast Furnace Gas

高炉 图形 计算机科学 高炉煤气 材料科学 理论计算机科学 冶金
作者
Tingkun Zhang,Chengbao Liu,Zhenjie Liu,Jie Tan,Mutellip Ahmat
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:5
标识
DOI:10.1109/tim.2023.3341110
摘要

Accurately predicting CO and CO2 content in blast furnace gas (BFG) holds immense significance, ensuring stable furnace operation and improving energy utilization. However, due to the variable operating conditions of blast furnace (BF) ironmaking and complex chemical reactions in the BF, it is difficult to accurately predict the changing trend of CO and CO2 content in BFG. To solve this problem, this study proposes a temporal double graph convolutional network (TDGCN) model for CO and CO2 content prediction. It consists of three parts: graph convolution, hypergraph convolution, and TimesNet. Specifically, we constructed a BF ironmaking feature graph in the face of the complex coupling relationship between BF ironmaking features. The graph convolutional network (GCN) is used to extract the topology on the feature graph and to update the feature variables. To further extract feature correlations and relevant information, we employ a hypergraph convolutional network to explore high-order correlations within the hypergraph. Subsequently, we utilize this information to update the feature graph, endowing the TDGCN model with dynamic adaptive capabilities under varying operating conditions. Finally, we introduce TimesNet to model long-term dependencies in BF ironmaking data. Through a series of experiments, the results show that the prediction effect of the TDGCN model is better than that of the traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芝麻芝麻开门完成签到,获得积分10
1秒前
1秒前
秦艽发布了新的文献求助10
1秒前
彭于晏应助zoey采纳,获得10
1秒前
hyl-tcm发布了新的文献求助30
2秒前
2秒前
喜悦完成签到,获得积分10
3秒前
3秒前
3秒前
CC发布了新的文献求助10
3秒前
4秒前
杰尼龟006完成签到,获得积分10
4秒前
四叠半芋头完成签到,获得积分10
5秒前
小二郎应助XDS采纳,获得10
5秒前
早点睡觉发布了新的文献求助10
5秒前
qin完成签到,获得积分10
6秒前
shelemi发布了新的文献求助10
6秒前
XuanWayne发布了新的文献求助10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
ZJHYNL发布了新的文献求助10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
高贵熊猫应助科研通管家采纳,获得20
7秒前
情怀应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
贺可乐完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
金勇完成签到,获得积分10
9秒前
mmnn完成签到 ,获得积分10
9秒前
9秒前
哇撒完成签到,获得积分10
9秒前
猪猪hero应助江添采纳,获得10
9秒前
orixero应助成就馒头采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232637
求助须知:如何正确求助?哪些是违规求助? 3765874
关于积分的说明 11832715
捐赠科研通 3424560
什么是DOI,文献DOI怎么找? 1879384
邀请新用户注册赠送积分活动 932281
科研通“疑难数据库(出版商)”最低求助积分说明 839489