Personalized assessment and training of neurosurgical skills in virtual reality: An interpretable machine learning approach

虚拟现实 培训(气象学) 计算机科学 人机交互 人工智能 心理学 医学教育 医学物理学 医学 物理 气象学
作者
Fei Li,Zhibao Qin,Kai Qian,Shaojun Liang,Chengli Li,Yonghang Tai
出处
期刊:Virtual Reality & Intelligent Hardware [Elsevier BV]
卷期号:6 (1): 17-29 被引量:1
标识
DOI:10.1016/j.vrih.2023.08.001
摘要

Virtual reality technology has been widely used in surgical simulators, providing new opportunities for assessing and training surgical skills. Machine learning algorithms are commonly used to analyze and evaluate the performance of participants. However, their interpretability limits the personalization of the training for individual participants. Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection. Data on the use of surgical tools were collected using a surgical simulator. Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model. Five machine learning algorithms were trained to predict the skill level, and the support vector machine performed the best, with an accuracy of 92.41% and Area Under Curve value of0.98253. The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant. This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical per- formances. The use of Shapley values enables targeted training by identifying deficiencies in individual skills. This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery. The interpretability of the machine learning models enables the development of individualized training programs. In addition, this study highlighted the potential of explanatory models in training external skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助mb采纳,获得10
1秒前
汉堡包应助YQF采纳,获得10
3秒前
聪明的谷菱完成签到 ,获得积分10
4秒前
高君奇发布了新的文献求助10
5秒前
诗轩发布了新的文献求助10
5秒前
5秒前
Orange应助xjp采纳,获得10
6秒前
CipherSage应助刘智山采纳,获得10
6秒前
李爱国应助小心薛了你采纳,获得10
8秒前
慕青应助幽灵采纳,获得10
9秒前
科研通AI5应助坦率铃铛采纳,获得10
10秒前
10秒前
快乐随心完成签到 ,获得积分10
10秒前
绿大暗发布了新的文献求助10
12秒前
14秒前
14秒前
222发布了新的文献求助10
14秒前
NexusExplorer应助高君奇采纳,获得10
15秒前
JUNE-gj发布了新的文献求助20
16秒前
18秒前
18秒前
星辰大海应助天亮了吗采纳,获得10
18秒前
19秒前
20秒前
21秒前
酷波er应助哼哼采纳,获得10
22秒前
xjp发布了新的文献求助10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
随影相伴完成签到 ,获得积分10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
YQF发布了新的文献求助10
23秒前
夏沐沐完成签到,获得积分10
23秒前
小哏完成签到,获得积分10
23秒前
K.Cui发布了新的文献求助30
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635