Global–Local 3-D Convolutional Transformer Network for Hyperspectral Image Classification

高光谱成像 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 像素 空间语境意识 判别式 特征提取
作者
Wenchao Qi,Changping Huang,Yibo Wang,Xia Zhang,Weiwei Sun,Lifu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:33
标识
DOI:10.1109/tgrs.2023.3272885
摘要

Benefiting from powerful feature extraction capabilities, convolutional neural networks (CNNs) have gained prominence in hyperspectral image (HSI) classification. Nevertheless, with restricted receptive fields of convolution kernels, CNN-based methods fail to learn complex characteristics of long-range sequences. Meanwhile, vision transformer allows us to learn long-range dependencies in a global view, but local region features are ignored. To overcome these limitations, we propose a novel method entitled global-local three-dimensional convolutional transformer network (GTCT), where 3-D convolution is embedded in a dual-branch transformer to simultaneously capture global-local associations in both spectral and spatial domains. In particular, the global-local spectral convolutional transformer (GECT) is designed to exploit global spectral sequence signatures and local spectral relationships between bands. Symmetrically, the global-local spatial convolutional transformer (GACT) is devised to exploit local spatial context features and global interactions among different pixels. In addition, multiscale global-local spectral-spatial information is adaptively fused with trainable weights by the weighted multiscale spectral-spatial feature interaction (WMSFI) module. It is worth noting that a spectral-spatial global attention mechanism (SSGAM) is incorporated into multi-head convolutional attention to further integrate discriminative spectral-spatial information. Extensive experiments on four HSI datasets, including GF-5 and ZY1-02D satellite hyperspectral images, demonstrate the superiority of the proposed GTCT method over other state-of-the-art algorithms with fewer parameters and lower floating-point operations (FLOPs) in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
用户12306发布了新的文献求助10
1秒前
鳗鱼紫萱发布了新的文献求助10
2秒前
木耳完成签到,获得积分10
2秒前
2秒前
张秋雨发布了新的文献求助10
6秒前
7秒前
风趣的凝雁完成签到,获得积分10
8秒前
用户12306完成签到,获得积分10
10秒前
丘比特应助董菲音采纳,获得10
13秒前
JamesPei应助希格斯玻色子采纳,获得10
15秒前
关键词完成签到,获得积分10
15秒前
15秒前
科研通AI5应助杨怡羊采纳,获得10
18秒前
19秒前
22秒前
豆沙包小团子完成签到 ,获得积分10
22秒前
鳗鱼紫萱完成签到,获得积分10
23秒前
董菲音发布了新的文献求助10
24秒前
25秒前
yuaner发布了新的文献求助10
26秒前
晓布衣完成签到 ,获得积分10
27秒前
27秒前
28秒前
iNk应助yuaner采纳,获得20
29秒前
情怀应助等都到采纳,获得10
29秒前
大鱼儿发布了新的文献求助10
30秒前
江北发布了新的文献求助10
30秒前
nini完成签到,获得积分10
32秒前
33秒前
CodeCraft应助yuaner采纳,获得10
34秒前
随遇而安应助yuaner采纳,获得20
34秒前
大个应助yuaner采纳,获得10
34秒前
隐形曼青应助yuaner采纳,获得10
34秒前
搜集达人应助yuaner采纳,获得10
34秒前
烟花应助yuaner采纳,获得10
34秒前
ss应助yuaner采纳,获得10
34秒前
bkagyin应助yuaner采纳,获得10
35秒前
wanci应助yuaner采纳,获得10
35秒前
在水一方应助yuaner采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440