已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining clinical-radiomics features with machine learning methods for building models to predict postoperative recurrence in patients with chronic subdural hematoma: Retrospective Cohort Study (Preprint)

人工智能 特征选择 机器学习 支持向量机 特征(语言学) 召回 医学 无线电技术 预测建模 数据集 计算机科学 心理学 语言学 哲学 认知心理学
作者
Cheng Fang,Xiao Ji,Yifeng Pan,Guanchao Xie,Hongsheng Zhang,Sai Li,Jinghai Wan
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e54944-e54944 被引量:4
标识
DOI:10.2196/54944
摘要

Background Chronic subdural hematoma (CSDH) represents a prevalent medical condition, posing substantial challenges in postoperative management due to risks of recurrence. Such recurrences not only cause physical suffering to the patient but also add to the financial burden on the family and the health care system. Currently, prognosis determination largely depends on clinician expertise, revealing a dearth of precise prediction models in clinical settings. Objective This study aims to use machine learning (ML) techniques for the construction of predictive models to assess the likelihood of CSDH recurrence after surgery, which leads to greater benefits for patients and the health care system. Methods Data from 133 patients were amassed and partitioned into a training set (n=93) and a test set (n=40). Radiomics features were extracted from preoperative cranial computed tomography scans using 3D Slicer software. These features, in conjunction with clinical data and composite clinical-radiomics features, served as input variables for model development. Four distinct ML algorithms were used to build predictive models, and their performance was rigorously evaluated via accuracy, area under the curve (AUC), and recall metrics. The optimal model was identified, followed by recursive feature elimination for feature selection, leading to enhanced predictive efficacy. External validation was conducted using data sets from additional health care facilities. Results Following rigorous experimental analysis, the support vector machine model, predicated on clinical-radiomics features, emerged as the most efficacious for predicting postoperative recurrence in patients with CSDH. Subsequent to feature selection, key variables exerting significant impact on the model were incorporated as the input set, thereby augmenting its predictive accuracy. The model demonstrated robust performance, with metrics including accuracy of 92.72%, AUC of 91.34%, and recall of 93.16%. External validation further substantiated its effectiveness, yielding an accuracy of 90.32%, AUC of 91.32%, and recall of 88.37%, affirming its clinical applicability. Conclusions This study substantiates the feasibility and clinical relevance of an ML-based predictive model, using clinical-radiomics features, for relatively accurate prognostication of postoperative recurrence in patients with CSDH. If the model is integrated into clinical practice, it will be of great significance in enhancing the quality and efficiency of clinical decision-making processes, which can improve the accuracy of diagnosis and treatment, reduce unnecessary tests and surgeries, and reduce the waste of medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助五博采纳,获得10
刚刚
科研通AI5应助休息日采纳,获得10
1秒前
shane发布了新的文献求助10
1秒前
3秒前
4秒前
郴欧尼完成签到 ,获得积分10
5秒前
HUU发布了新的文献求助30
5秒前
蟹蟹发布了新的文献求助10
7秒前
8秒前
holly发布了新的文献求助10
8秒前
醒醒发布了新的文献求助10
8秒前
10秒前
爆米花应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
yydragen应助科研通管家采纳,获得30
13秒前
若雨凌风应助科研通管家采纳,获得200
13秒前
coolkid应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
勤奋尔丝完成签到 ,获得积分10
16秒前
9℃完成签到 ,获得积分10
16秒前
瓦达伟大发布了新的文献求助10
17秒前
持卿应助清爽胡萝卜采纳,获得10
20秒前
懒得可爱发布了新的文献求助10
20秒前
NexusExplorer应助窝窝头采纳,获得10
21秒前
fang完成签到 ,获得积分10
23秒前
顾矜应助心中的日月采纳,获得10
23秒前
盼盼完成签到 ,获得积分10
23秒前
24秒前
24秒前
feifei完成签到,获得积分10
25秒前
xu完成签到,获得积分10
27秒前
28秒前
holly发布了新的文献求助10
29秒前
29秒前
明理的天抒完成签到 ,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387578
关于积分的说明 10550072
捐赠科研通 3108321
什么是DOI,文献DOI怎么找? 1712538
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774807