清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combining clinical-radiomics features with machine learning methods for building models to predict postoperative recurrence in patients with chronic subdural hematoma: Retrospective Cohort Study (Preprint)

人工智能 特征选择 机器学习 支持向量机 特征(语言学) 召回 医学 无线电技术 预测建模 数据集 计算机科学 心理学 语言学 哲学 认知心理学
作者
Cheng Fang,Xiao Ji,Yifeng Pan,Guanchao Xie,Hongsheng Zhang,Sai Li,Jinghai Wan
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e54944-e54944 被引量:7
标识
DOI:10.2196/54944
摘要

Background Chronic subdural hematoma (CSDH) represents a prevalent medical condition, posing substantial challenges in postoperative management due to risks of recurrence. Such recurrences not only cause physical suffering to the patient but also add to the financial burden on the family and the health care system. Currently, prognosis determination largely depends on clinician expertise, revealing a dearth of precise prediction models in clinical settings. Objective This study aims to use machine learning (ML) techniques for the construction of predictive models to assess the likelihood of CSDH recurrence after surgery, which leads to greater benefits for patients and the health care system. Methods Data from 133 patients were amassed and partitioned into a training set (n=93) and a test set (n=40). Radiomics features were extracted from preoperative cranial computed tomography scans using 3D Slicer software. These features, in conjunction with clinical data and composite clinical-radiomics features, served as input variables for model development. Four distinct ML algorithms were used to build predictive models, and their performance was rigorously evaluated via accuracy, area under the curve (AUC), and recall metrics. The optimal model was identified, followed by recursive feature elimination for feature selection, leading to enhanced predictive efficacy. External validation was conducted using data sets from additional health care facilities. Results Following rigorous experimental analysis, the support vector machine model, predicated on clinical-radiomics features, emerged as the most efficacious for predicting postoperative recurrence in patients with CSDH. Subsequent to feature selection, key variables exerting significant impact on the model were incorporated as the input set, thereby augmenting its predictive accuracy. The model demonstrated robust performance, with metrics including accuracy of 92.72%, AUC of 91.34%, and recall of 93.16%. External validation further substantiated its effectiveness, yielding an accuracy of 90.32%, AUC of 91.32%, and recall of 88.37%, affirming its clinical applicability. Conclusions This study substantiates the feasibility and clinical relevance of an ML-based predictive model, using clinical-radiomics features, for relatively accurate prognostication of postoperative recurrence in patients with CSDH. If the model is integrated into clinical practice, it will be of great significance in enhancing the quality and efficiency of clinical decision-making processes, which can improve the accuracy of diagnosis and treatment, reduce unnecessary tests and surgeries, and reduce the waste of medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Heart_of_Stone完成签到 ,获得积分10
1秒前
在水一方完成签到 ,获得积分10
7秒前
9秒前
虚心的皓轩完成签到 ,获得积分10
11秒前
12秒前
糖糖完成签到 ,获得积分10
18秒前
cristole完成签到 ,获得积分10
18秒前
25秒前
gkhsdvkb发布了新的文献求助30
31秒前
失眠的香蕉完成签到 ,获得积分0
35秒前
43秒前
shu发布了新的文献求助10
44秒前
shu完成签到,获得积分10
52秒前
大旭完成签到 ,获得积分10
54秒前
智智完成签到 ,获得积分10
55秒前
可夫司机完成签到 ,获得积分10
56秒前
王昭完成签到 ,获得积分10
56秒前
1分钟前
奋斗的雪曼完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
微笑的天抒完成签到,获得积分10
1分钟前
玺青一生完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
如影随形完成签到 ,获得积分10
1分钟前
柯水果发布了新的文献求助10
1分钟前
牛马自己push完成签到 ,获得积分10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
噼里啪啦完成签到 ,获得积分10
1分钟前
牛仔完成签到 ,获得积分10
1分钟前
阿六完成签到,获得积分20
1分钟前
1分钟前
符从丹完成签到,获得积分10
1分钟前
Samia完成签到,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
shiqiyu发布了新的文献求助10
1分钟前
HL完成签到 ,获得积分10
1分钟前
pirateharbor完成签到,获得积分10
1分钟前
科研通AI6应助shiqiyu采纳,获得30
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4249733
求助须知:如何正确求助?哪些是违规求助? 3782869
关于积分的说明 11873844
捐赠科研通 3434855
什么是DOI,文献DOI怎么找? 1885045
邀请新用户注册赠送积分活动 936745
科研通“疑难数据库(出版商)”最低求助积分说明 842650