亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining clinical-radiomics features with machine learning methods for building models to predict postoperative recurrence in patients with chronic subdural hematoma: Retrospective Cohort Study (Preprint)

人工智能 特征选择 机器学习 支持向量机 特征(语言学) 召回 医学 无线电技术 预测建模 数据集 计算机科学 心理学 语言学 哲学 认知心理学
作者
Cheng Fang,Xiao Ji,Yifeng Pan,Guanchao Xie,Hongsheng Zhang,Sai Li,Jinghai Wan
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e54944-e54944 被引量:7
标识
DOI:10.2196/54944
摘要

Background Chronic subdural hematoma (CSDH) represents a prevalent medical condition, posing substantial challenges in postoperative management due to risks of recurrence. Such recurrences not only cause physical suffering to the patient but also add to the financial burden on the family and the health care system. Currently, prognosis determination largely depends on clinician expertise, revealing a dearth of precise prediction models in clinical settings. Objective This study aims to use machine learning (ML) techniques for the construction of predictive models to assess the likelihood of CSDH recurrence after surgery, which leads to greater benefits for patients and the health care system. Methods Data from 133 patients were amassed and partitioned into a training set (n=93) and a test set (n=40). Radiomics features were extracted from preoperative cranial computed tomography scans using 3D Slicer software. These features, in conjunction with clinical data and composite clinical-radiomics features, served as input variables for model development. Four distinct ML algorithms were used to build predictive models, and their performance was rigorously evaluated via accuracy, area under the curve (AUC), and recall metrics. The optimal model was identified, followed by recursive feature elimination for feature selection, leading to enhanced predictive efficacy. External validation was conducted using data sets from additional health care facilities. Results Following rigorous experimental analysis, the support vector machine model, predicated on clinical-radiomics features, emerged as the most efficacious for predicting postoperative recurrence in patients with CSDH. Subsequent to feature selection, key variables exerting significant impact on the model were incorporated as the input set, thereby augmenting its predictive accuracy. The model demonstrated robust performance, with metrics including accuracy of 92.72%, AUC of 91.34%, and recall of 93.16%. External validation further substantiated its effectiveness, yielding an accuracy of 90.32%, AUC of 91.32%, and recall of 88.37%, affirming its clinical applicability. Conclusions This study substantiates the feasibility and clinical relevance of an ML-based predictive model, using clinical-radiomics features, for relatively accurate prognostication of postoperative recurrence in patients with CSDH. If the model is integrated into clinical practice, it will be of great significance in enhancing the quality and efficiency of clinical decision-making processes, which can improve the accuracy of diagnosis and treatment, reduce unnecessary tests and surgeries, and reduce the waste of medical resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木完成签到,获得积分20
8秒前
可口可乐完成签到,获得积分10
30秒前
36秒前
2641490618发布了新的文献求助10
40秒前
2641490618完成签到,获得积分10
46秒前
酷波er应助liuliu采纳,获得10
53秒前
房明锴完成签到,获得积分10
54秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
眯眯眼的龙猫完成签到,获得积分10
1分钟前
2分钟前
南宫愚志完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fukase发布了新的文献求助10
3分钟前
3分钟前
jfc完成签到 ,获得积分10
3分钟前
liuliu发布了新的文献求助10
3分钟前
怡然自中完成签到 ,获得积分10
3分钟前
延迟整流钾电流完成签到,获得积分10
4分钟前
4分钟前
Hu完成签到,获得积分20
4分钟前
liuliu发布了新的文献求助10
4分钟前
lovelife完成签到,获得积分10
4分钟前
liuliu完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
fukase完成签到,获得积分10
5分钟前
renhuizhi完成签到,获得积分10
5分钟前
xxx发布了新的文献求助10
5分钟前
zpli完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091