材料科学
聚合物
接口(物质)
固态
钠
化学工程
纳米技术
无机化学
工程物理
复合材料
冶金
毛细管数
工程类
化学
毛细管作用
作者
Chen Hao,Hengchang Zang,Jun Du,Hengrui Zhang,Xijun Xu,Peiyun Zhang,Xiaoge Li,Jie Han,Xun‐Lu Li,Qinchao Wang
标识
DOI:10.1002/adfm.202504177
摘要
Abstract Solid–state sodium metal batteries with solid polymer electrolytes face significant challenges due to low ionic conductivity and limited electrochemical window. This study presents an innovative interface regulation strategy to expose Lewis–acidic hydroxyl (–OH) and fluoride (F − ) on the (110) and (111) planes of ZnOHF nanorods. By modulating the Lewis–acid intensity at the polymer–inorganic interface, ionic conductivity and Na + ion transfer number are increased, while Na dendrite is suppressed. Density Functional Theory (DFT) calculations indicate that a Na + ion engages with four –OH on the (110) plane, or with one –OH and three F − on the (111) plane. The (110) plane demonstrates a lower adsorption energy for Na + ions (−2.93 eV) compared to the (111) plane (−3.85 eV), but shows a stronger adsorption capability for FSI − ions, facilitating efficient Na + transport and strengthening FSI − ion interactions. Experimentally, the PN@ZnOHF–30 electrolyte, incorporating ZnOHF–30 nanorods primarily oriented with (110) planes, achieves an ionic conductivity of 5.74×10 −4 S cm −1 and a Na + ion transfer number of 0.42 at 80 °C. Na|PN@ZnOHF–30|Na symmetric cell maintains stable Na plating/stripping for 1000 h. Na 3 V 2 (PO 4 ) 3 |PN@ZnOHF–30|Na and Na 3 V 2 (PO 4 ) 3 |PN@ZnOHF–30|NaTi 2 (PO 4 ) 3 cells show excellent rate performance and cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI