GAMMNet: Gating Multi-head Attention in a Multi-modal Deep Network for Sound Based Respiratory Disease Detection

计算机科学 主管(地质) 情态动词 呼吸音 门控 语音识别 人工智能 医学 哮喘 内科学 地质学 材料科学 生理学 地貌学 高分子化学
作者
Shaokang Liu,Zhaoji Dai,Zhenjun Zhuang,Xianwei Zheng,Minfan He,Qing Miao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3569160
摘要

Respiratory diseases present significant challenges to global health due to their high morbidity and mortality rates. Traditional diagnostic methods, such as chest radiographs and blood tests, often lead to unnecessary costs and resource strain, as well as potential risks of cross-contamination during these procedures. In recent years, contactless sensing and intelligent technologies, particularly multi-modal sound-based deep learning methods, have emerged as promising solutions for the early detection of respiratory diseases. While these methods have shown encouraging results, the integration of multi-modal features has not been sufficiently explored, which limits the enhancement of diagnostic accuracy. To address this issue, we introduce GAMMNet, a novel multi-modal neural network designed to enhance the detection of respiratory diseases by leveraging multi-modal sound data collected from contactless recording devices. GAMMNet utilizes a unique gating mechanism that adaptively regulates the influence of each modality on the classification results. Additionally, our model incorporates multi-head attention and linear transformation modules to further enhance classification performance. Our GAMMNet achieves state-of-the-art classification results, compared to existing deep learning based methods, on real-world multi-modal respiratory sound datasets. These findings demonstrate the robustness and effectiveness of GAMMNet in the contactless monitoring and early detection of respiratory diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木草完成签到,获得积分20
1秒前
共享精神应助魔幻安南采纳,获得10
2秒前
2秒前
浮世之笙完成签到,获得积分10
2秒前
田様应助学习学习学习采纳,获得10
4秒前
5秒前
cxd发布了新的文献求助10
7秒前
大力的晓刚完成签到,获得积分10
9秒前
10秒前
典雅嫣完成签到,获得积分10
12秒前
研友_VZG7GZ应助黎明森采纳,获得10
13秒前
bing完成签到,获得积分10
13秒前
15秒前
FashionBoy应助WSDSG采纳,获得10
17秒前
17秒前
21秒前
zq完成签到 ,获得积分10
21秒前
bing发布了新的文献求助10
21秒前
22秒前
上官若男应助伦哥读论文采纳,获得10
23秒前
黎明森发布了新的文献求助10
25秒前
25秒前
123123发布了新的文献求助10
27秒前
解解闷完成签到,获得积分10
29秒前
善学以致用应助不想学习采纳,获得10
29秒前
研友_VZG7GZ应助Nowind采纳,获得30
31秒前
黎明森完成签到,获得积分10
32秒前
33秒前
pluto应助Ryan采纳,获得50
33秒前
朝阳区李知恩完成签到,获得积分0
34秒前
37秒前
Livrik发布了新的文献求助10
39秒前
41秒前
41秒前
lxiaok完成签到,获得积分10
42秒前
lwl666应助ArthurC采纳,获得10
42秒前
美少女战士完成签到,获得积分10
43秒前
天天快乐应助hjh采纳,获得10
44秒前
妖妖灵发布了新的文献求助10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Walnut Culture In California: Walnut Blight 400
The Walnut Situation 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4797906
求助须知:如何正确求助?哪些是违规求助? 4117529
关于积分的说明 12738145
捐赠科研通 3847882
什么是DOI,文献DOI怎么找? 2120277
邀请新用户注册赠送积分活动 1142297
关于科研通互助平台的介绍 1031943