Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 语言学 光学 物理 哲学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108261-108261 被引量:9
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx完成签到,获得积分10
1秒前
大个应助DoctorX采纳,获得10
1秒前
xiaoli发布了新的文献求助10
4秒前
情怀应助xxx采纳,获得10
5秒前
rose123456完成签到,获得积分20
5秒前
昏睡的静丹完成签到,获得积分10
7秒前
钟秋霞完成签到,获得积分10
8秒前
10秒前
SLJK发布了新的文献求助10
10秒前
10秒前
脑洞疼应助郁奥古采纳,获得10
11秒前
scott_zip完成签到 ,获得积分10
11秒前
12秒前
wanci应助damahayu采纳,获得10
13秒前
传奇3应助十先生的猫采纳,获得10
14秒前
123发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
不包含特殊字符完成签到,获得积分10
18秒前
小赵发布了新的文献求助10
19秒前
22秒前
柒咩咩发布了新的文献求助10
23秒前
23秒前
23秒前
123完成签到,获得积分10
24秒前
24秒前
tw0125完成签到 ,获得积分10
25秒前
bkagyin应助我我我采纳,获得10
25秒前
25秒前
26秒前
小赵完成签到,获得积分10
26秒前
li123xxx发布了新的文献求助10
27秒前
汉堡包应助xxx采纳,获得10
27秒前
YOURINZ完成签到,获得积分10
27秒前
李向东发布了新的文献求助10
28秒前
领导范儿应助清新的音响采纳,获得10
28秒前
28秒前
啦啦啦完成签到,获得积分10
29秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366