Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach

计算机科学 棱锥(几何) 判别式 人工智能 卷积神经网络 瓶颈 残余物 卷积(计算机科学) 架空(工程) 特征(语言学) 模式识别(心理学) 人工神经网络 算法 嵌入式系统 操作系统 语言学 光学 物理 哲学
作者
Yu Yang,Yi Zhang,Zeyu Cheng,Zhe Song,Chengkai Tang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108261-108261 被引量:17
标识
DOI:10.1016/j.engappai.2024.108261
摘要

Attention mechanisms have gradually become necessary to enhance the representational power of convolutional neural networks (CNNs). Despite recent progress in attention mechanism research, some open problems still exist. Most existing methods ignore modeling multi-scale feature representations, structural information, and long-range channel dependencies, which are essential for delivering more discriminative attention maps. This study proposes a novel, low-overhead, high-performance attention mechanism with strong generalization ability for various networks and datasets. This mechanism is called Multi-Scale Spatial Pyramid Attention (MSPA) and can be used to solve the limitations of other attention methods. For the critical components of MSPA, we not only develop the Hierarchical-Phantom Convolution (HPC) module, which can extract multi-scale spatial information at a more granular level utilizing hierarchical residual-like connections, but also design the Spatial Pyramid Recalibration (SPR) module, which can integrate structural regularization and structural information in an adaptive combination mechanism, while employing the Softmax operation to build long-range channel dependencies. The proposed MSPA is a powerful tool that can be conveniently embedded into various CNNs as a plug-and-play component. Correspondingly, using MSPA to replace the 3 × 3 convolution in the bottleneck residual blocks of ResNets, we created a series of simple and efficient backbones named MSPANet, which naturally inherit the advantages of MSPA. Without bells and whistles, our method substantially outperforms other state-of-the-art counterparts in all evaluation metrics based on extensive experimental results from CIFAR-100 and ImageNet-1K image recognition. When applying MSPA to ResNet-50, our model achieves top-1 classification accuracy of 81.74% and 78.40% on the CIFAR-100 and ImageNet-1K benchmarks, exceeding the corresponding baselines by 3.95% and 2.27%, respectively. We also obtained promising performance improvements of 1.15% and 0.91% compared to the competitive EPSANet-50. In addition, empirical research results in autonomous driving engineering applications also demonstrate that our method can significantly improve the accuracy and real-time performance of image recognition with cheaper overhead. Our code is publicly available at https://github.com/ndsclark/MSPANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻的觅风完成签到,获得积分10
刚刚
wenyiboy完成签到,获得积分10
刚刚
1秒前
齐天完成签到 ,获得积分10
1秒前
dyjjudy发布了新的文献求助10
2秒前
寻雾启事完成签到,获得积分10
2秒前
耍酷海白完成签到,获得积分20
2秒前
李爱国应助ying采纳,获得10
2秒前
阡陌发布了新的文献求助10
3秒前
醉清风完成签到 ,获得积分10
3秒前
Hanson完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
悦耳易烟完成签到,获得积分10
4秒前
dan发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
完美世界应助大马哈鱼采纳,获得10
6秒前
结实星星应助江沅采纳,获得20
6秒前
耍酷海白发布了新的文献求助20
6秒前
大胆花卷完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
干净水彤发布了新的文献求助10
8秒前
巨星不吃辣完成签到,获得积分10
9秒前
9秒前
苏打发布了新的文献求助10
10秒前
sunny发布了新的文献求助10
10秒前
cqz完成签到,获得积分20
11秒前
11秒前
11秒前
DyG发布了新的文献求助10
12秒前
李沐唅发布了新的文献求助10
12秒前
12秒前
wantong发布了新的文献求助10
12秒前
温暖幻桃发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403373
求助须知:如何正确求助?哪些是违规求助? 3889951
关于积分的说明 12106422
捐赠科研通 3534584
什么是DOI,文献DOI怎么找? 1939503
邀请新用户注册赠送积分活动 980305
科研通“疑难数据库(出版商)”最低求助积分说明 877188