A novel fault diagnosis method for imbalanced datasets based on MCNN‐Transformer model in industrial processes

计算机科学 变压器 人工智能 数据挖掘 断层(地质) 机器学习 深度学习 卷积神经网络 工程类 电压 地震学 地质学 电气工程
作者
R.M.T. Lu
出处
标识
DOI:10.1002/acs.3817
摘要

Summary Fault diagnosis methods based on deep learning have been extensively applied to the fault classification of rolling bearings, yielding favorable results. However, many of these methods still have substantial room for improvement in practical industrial scenarios. This article addresses the issue of imbalanced fault data categories commonly encountered in real‐world contexts and discusses the characteristics of long time series data in fault signals. To tackle these challenges, a model based on multi‐scale convolutional neural networks and transformer (MCNNT) is proposed. First, in the data processing stage, a diffusion model is introduced to handle the problem of data imbalance. This model learns the distribution of minority samples and generates new samples. Second, the proposed model incorporates an attention mechanism, enabling it to capture the global information of the data during the feature learning stage and effectively utilize the relationships between preceding and subsequent elements in long sequential data. This allows the model to accurately focus on key features. Experimental results demonstrate the exceptional performance of the proposed method, which is capable of generating high‐quality samples and providing a solution to address challenges in practical industrial scenarios. Consequently, the proposed method exhibits significant potential for further development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
celinewu完成签到,获得积分10
1秒前
2秒前
wuxidixi发布了新的文献求助10
2秒前
Lucas应助潇潇雨歇采纳,获得10
2秒前
Ruby完成签到,获得积分10
4秒前
zyy完成签到,获得积分10
5秒前
lee发布了新的文献求助10
6秒前
wwv完成签到,获得积分20
6秒前
6秒前
jiangshanshan发布了新的文献求助30
6秒前
7秒前
10秒前
莉莉发布了新的文献求助10
12秒前
Lds发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI5应助wei采纳,获得10
14秒前
14秒前
立冏商完成签到,获得积分10
14秒前
16秒前
脂蛋白抗原完成签到,获得积分10
17秒前
18秒前
19秒前
front发布了新的文献求助10
20秒前
小黑鲨发布了新的文献求助10
20秒前
22秒前
22秒前
jiangshanshan完成签到,获得积分20
22秒前
gjq发布了新的文献求助10
22秒前
mnliao发布了新的文献求助10
24秒前
kingwill应助kaikai采纳,获得20
25秒前
LIVE完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
瑶瑶完成签到,获得积分10
29秒前
科研兄发布了新的文献求助10
29秒前
微笑向日葵完成签到,获得积分10
29秒前
锦鲤完成签到 ,获得积分10
30秒前
andy发布了新的文献求助10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225