Transfer Learning-Based Generative Adversarial Network Model for Tropical Cyclone Wind Speed Reconstruction From SAR Images

热带气旋 合成孔径雷达 遥感 风速 环境科学 计算机科学 气象学 人工智能 地质学 地理
作者
Xiaohui Li,Xinhai Han,Jingsong Yang,Jiuke Wang,Guoqi Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:3
标识
DOI:10.1109/tgrs.2024.3390392
摘要

Synthetic-aperture radar (SAR) plays a crucial role in monitoring the fine structure of tropical cyclones, but its effectiveness is constrained by limitations such as signal degradation and saturation. To address this challenge, we proposed a transfer learning-based generative adversarial network (GAN) framework with a dilated convolution and attention mechanism for reconstructing inner-core high winds from SAR images. We have employed the principles of transfer learning to adapt pre-trained models developed by the HWRF (Hurricane Weather Research and Forecasting model) winds to SAR images during tropical cyclone events for reconstruction. The proposed model can effectively capture the relationship between features in the low-precision areas and global features from SAR images, facilitating tropical cyclone wind speed reconstruction. The utilization of Global Precipitation Measurement (GPM) Level 3 rainfall data facilitates the identification of rainfall regions in 89 SAR images obtained from Radarsat-2 and Sentinel-1A/B missions. Comparison with Stepped Frequency Microwave Radiometer (SFMR) data reveals that the model exhibits a bias of –0.69 m/s, an RMSE of 4.08 m/s, and an R value of 0.91 under heavy rainfall conditions (>7.62 mm/hr). Remarkably, the GAN model exhibits excellent performance compared with measurements from the Soil Moisture Active Passive (SMAP) L-band radiometer, achieving an RMSE of 3.78 m/s. Our findings indicate that deep learning technology holds significant promise for the reconstruction and monitoring of tropical cyclones through the utilization of SAR imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助神勇的邑采纳,获得10
2秒前
爆米花应助ssssss采纳,获得10
2秒前
3秒前
6秒前
内向的火车完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
科研通AI5应助kai采纳,获得10
10秒前
wry完成签到,获得积分10
14秒前
15秒前
云端步伐完成签到,获得积分10
15秒前
Bingbingbing完成签到,获得积分10
16秒前
Lucas应助Shao_Jq采纳,获得10
23秒前
dy关闭了dy文献求助
24秒前
臭弟弟你别摆了完成签到,获得积分20
24秒前
29秒前
sprouthui完成签到 ,获得积分10
30秒前
32秒前
塇塇发布了新的文献求助20
34秒前
34秒前
36秒前
都兰完成签到,获得积分10
37秒前
楼一笑发布了新的文献求助10
37秒前
斯寜完成签到,获得积分0
37秒前
岳岳岳发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
40秒前
41秒前
花开富贵发布了新的文献求助10
44秒前
科研通AI2S应助商陆采纳,获得10
46秒前
49秒前
coolkid应助科研通管家采纳,获得10
49秒前
dfffefef完成签到,获得积分10
49秒前
深情安青应助科研通管家采纳,获得10
50秒前
冰魂应助科研通管家采纳,获得10
50秒前
英姑应助科研通管家采纳,获得10
50秒前
爆米花应助科研通管家采纳,获得30
50秒前
852应助科研通管家采纳,获得10
50秒前
22222应助zz采纳,获得30
50秒前
思源应助科研通管家采纳,获得10
50秒前
50秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865015
求助须知:如何正确求助?哪些是违规求助? 3407392
关于积分的说明 10654120
捐赠科研通 3131465
什么是DOI,文献DOI怎么找? 1727064
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780166