亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 4970: Multi-modal machine learning approaches for predicting cancer type and Gleason grade leveraging public TCGA data

情态动词 医学 癌症 肿瘤科 内科学 计算机科学 化学 高分子化学
作者
Christian Wohlfart,Eldad Klaiman,Jacub Witkowski,Michael R. King,Jacob Gildenblat,Ofir Etz-Hadar,Mohammad Ashtari,Antoaneta Vladimirova
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 4970-4970
标识
DOI:10.1158/1538-7445.am2024-4970
摘要

Abstract Introduction: To better understand the complex and challenging nature of diseases such as cancer and for improved diagnosis, it may require the combination of multiple data modalities, such as histopathological images and omics data such as RNA-seq. By integrating these heterogeneous but complementary data, a multimodal approach unites both worlds and could achieve better synergistic results compared to using a single modality. The growing availability of large datasets such as The Cancer Genome Atlas (TCGA) with more than 10000 patients made it possible to combine different modalities to train machine learning algorithms which offers great potential to address challenging cancer related research. In this proof of concept initiative we use machine learning approaches within an open-source framework in order to leverage the potential of multimodality (Histopathology Whole Slide Images (WSI) and Genomics/RNA-seq) to build predictive AI models for cancer type and prostate Gleason score, and provide a potential to develop a quality control step. Method: We used matched WSI and RNA-Seq profiles from TCGA, including 11093 samples and 30 cancer types to develop a pancancer classification model using both modalities. For prostate Gleason score prediction 401 patients were available. Both datasets were split into a train (70%) and test (30%) components. We used a late fusion approach where we combined the RNA-seq model (linear SVM) with the WSI model (Resnet18) by multiplying the probability scores of each single-modality model. Model performance was measured with the F1 metric. Results: For cancer type prediction, the multimodality model achieved an F1 score of 0.95 on the test set. About 40% of the cancer types benefited from a synergistic effect by combining the two modalities. Cancer types and percent increase in F1 scores, respectively, that benefit most by combining modalities are: Cervical squamous cell carcinoma and endocervical adenocarcinoma (4.23%), Cholangiosarcoma (6.66%) and Uterine carcinosarcoma (4%). Interestingly, in other cancer types the combination did not result in improved predictive scores compared to a single modality model, e.g. in Rectum adenocarcinoma, Sarcoma or Stomach adenocarcinoma. For Prostate cancer grading, Gleason score prediction of patterns 3/4/5, combined multi modality model earned 0.73 F1 outperforming the single modality models. Conclusion: By combining histopathology imaging and omics modalities we demonstrated synergistic effects in predictive power for both cancer-related research questions. We show improved predictive performance in 40% of the classified cancer types by taking both modalities. Imaging or omics modalities alone can be sufficient in some cases and their strengths are very problem-specific. Citation Format: Christian Wohlfart, Eldad Klaiman, Jacub Witkowski, Michael King, Jacob Gildenblat, Ofir Etz-Hadar, Mohammad Ashtari, Antoaneta Vladimirova. Multi-modal machine learning approaches for predicting cancer type and Gleason grade leveraging public TCGA data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 4970.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
wanci应助zq采纳,获得10
17秒前
CHEN完成签到 ,获得积分10
20秒前
22秒前
23秒前
24秒前
39秒前
ZQJ2001KYT应助科研通管家采纳,获得10
52秒前
1分钟前
1分钟前
Hui发布了新的文献求助10
1分钟前
Hui完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
4分钟前
犹豫幻丝发布了新的文献求助20
4分钟前
4分钟前
科研通AI5应助犹豫幻丝采纳,获得10
5分钟前
Sunny完成签到,获得积分10
5分钟前
5分钟前
Ava应助h0jian09采纳,获得10
5分钟前
5分钟前
馆长应助breeze采纳,获得30
5分钟前
6分钟前
袁青寒完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
spike发布了新的文献求助10
6分钟前
breeze完成签到,获得积分10
6分钟前
无限鸵鸟发布了新的文献求助10
6分钟前
Alisha完成签到,获得积分10
6分钟前
PeterLin完成签到,获得积分10
6分钟前
7分钟前
小蘑菇应助赟然采纳,获得20
7分钟前
8分钟前
lili发布了新的文献求助50
8分钟前
8分钟前
huanghe完成签到,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513695
求助须知:如何正确求助?哪些是违规求助? 3958844
关于积分的说明 12270730
捐赠科研通 3620439
什么是DOI,文献DOI怎么找? 1992456
邀请新用户注册赠送积分活动 1028766
科研通“疑难数据库(出版商)”最低求助积分说明 919858