亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling Student Performance using Feature Crosses Information for Knowledge Tracing

计算机科学 追踪 特征(语言学) 人工智能 程序设计语言 语言学 哲学
作者
Lixiang Xu,Ziruo Wang,Suojuan Zhang,Xin Yuan,Minjuan Wang,Enhong Chen
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1390-1403 被引量:1
标识
DOI:10.1109/tlt.2024.3381045
摘要

Knowledge tracing (KT) is an intelligent educational technology used to model students' learning progress and mastery in adaptive learning environments for personalized education. Despite utilizing deep learning models in KT, current approaches often oversimplify students' exercise records into knowledge sequences, which fail to explore the rich information within individual questions. Additionally, existing KT models tend to neglect the complex, higher-order relationships between questions and latent concepts. Therefore, we introduce a novel model called Feature Crosses Information-based Knowledge Tracing (FCIKT) to explore the intricate interplay between questions, latent concepts, and question difficulties. FCIKT utilizes a fusion module to perform feature crosses operations on questions, integrating information from our constructed multi-relational heterogeneous graph using graph convolutional networks. We deployed a multi-head attention mechanism, which enriches the static embedding representations of questions and concepts with dynamic semantic information to simulate real-world scenarios of problem-solving. We also used gated recurrent units to dynamically capture and update the students' knowledge state for final prediction. Extensive experiments demonstrated the validity and interpretability of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分20
4秒前
冬去春来完成签到 ,获得积分10
5秒前
科研通AI5应助读书的时候采纳,获得10
6秒前
打打应助Mcrolando采纳,获得30
11秒前
17秒前
Akim应助科研通管家采纳,获得10
20秒前
俭朴山灵完成签到 ,获得积分10
24秒前
赘婿应助读书的时候采纳,获得10
24秒前
Lucas应助读书的时候采纳,获得10
43秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
StonesKing完成签到,获得积分20
1分钟前
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
chnhen发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
chnhen完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
wuran发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099247
求助须知:如何正确求助?哪些是违规求助? 3636789
关于积分的说明 11525740
捐赠科研通 3346421
什么是DOI,文献DOI怎么找? 1839269
邀请新用户注册赠送积分活动 906501
科研通“疑难数据库(出版商)”最低求助积分说明 823831