A light-weight defect detection model for capacitor appearance based on the Yolov5

电容器 计算机科学 卷积(计算机科学) 块(置换群论) 过程(计算) 交叉口(航空) 人工智能 电压 工程类 数学 人工神经网络 电气工程 几何学 航空航天工程 操作系统
作者
Lei Xu,Xuemei Xu,Qinglin Xia,Yexia Yao,Zhaohui Jiang
出处
期刊:Measurement [Elsevier BV]
卷期号:232: 114717-114717
标识
DOI:10.1016/j.measurement.2024.114717
摘要

As one of the most important electronic components, capacitors are very important for appearance inspection in the production process. However, the current production process mainly relies on manual inspection, which not only reduces product quality and production efficiency but also increases production costs. The automated detection is limited by the computational resources of the equipment, which is difficult to apply in practice. Therefore, in this paper, we propose a lightweight method for capacitor appearance inspection. We use the YOLOv5 (You Only Look Once Version 5) framework, MobileNet as the backbone network, and GSConv (Ghost convolution) and GSCSP module as the neck depth compression network model to reduce the computational cost. In addition, we incorporate the CBAM (Convolutional Block Attention Module) into the backbone network to improve the network's ability to extract features. For the problem of difficult detection of small targets, we use CIoU (Complete Intersection Union) and NWD (Normalised Gaussian Wasserstein Distance) to design a new loss function. By testing our method on capacitor appearance defect data, compared to the baseline, the model computational cost FLOPs was reduced by 130 %, the model size was reduced by 94%, the accuracy reached 92.5%, and the mAP (mean average precision) reached 92.3%, while the number of frames detected per second was up to 58 frames. The experimental results show that our method is capable of real-time detection of capacitor appearance defects, providing strong theoretical support for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jnuszjz发布了新的文献求助10
1秒前
lalala完成签到,获得积分10
2秒前
2秒前
5秒前
5秒前
6秒前
奋斗绿旋完成签到,获得积分10
6秒前
嘻嘻发布了新的文献求助10
6秒前
英姑应助李凤凤采纳,获得10
7秒前
热心的十二完成签到 ,获得积分10
8秒前
Young发布了新的文献求助10
8秒前
英俊的铭应助OSASACB采纳,获得10
8秒前
9秒前
SciGPT应助糟糕的妙海采纳,获得10
9秒前
yy76完成签到,获得积分10
10秒前
十八发布了新的文献求助10
10秒前
liman发布了新的文献求助10
10秒前
苑阿宇发布了新的文献求助20
11秒前
super完成签到,获得积分10
12秒前
爱老婆发布了新的文献求助10
12秒前
慕青应助Lu_ckilly采纳,获得10
12秒前
zxtwins发布了新的文献求助10
13秒前
13秒前
14秒前
ding应助伶俐惜萱采纳,获得10
14秒前
14秒前
Peng完成签到,获得积分10
15秒前
16秒前
16秒前
Jack完成签到,获得积分10
17秒前
18秒前
那年春发布了新的文献求助10
18秒前
务实青筠发布了新的文献求助10
19秒前
风趣觅荷发布了新的文献求助10
19秒前
19秒前
19秒前
畅快的刚完成签到,获得积分10
20秒前
及桉完成签到,获得积分10
20秒前
李凤凤发布了新的文献求助10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462