材料科学
摩擦电效应
静电纺丝
纳米纤维
复合材料
接触角
纤维素
纳米发生器
纳米纤维素
化学工程
聚合物
压电
工程类
作者
Zhaodong Ding,Zhongjian Tian,Xingxiang Ji,Dongxing Wang,Xiaolei Ci,Xuejun Shao,Orlando J. Rojas
标识
DOI:10.1016/j.ijbiomac.2022.12.122
摘要
Water waves are viable low-carbon and renewable sources of power that can be optionally combined with triboelectric nanogeneration (TENG). Herein, we report on the synthesis of a TENG device based on green wrinkled paper tribolayers (W-TENG) assembled in grids (G-TENG) with channels that enable contact-separation modes involving metal balls that roll in phase with the waves. The paper's wrinkle wavelength and amplitude were adjusted by using a crepe blade at a given angle with respect to a drying cylinder, as well as the speed and torque. Polar hierarchical superhydrophobic cellulose micro/nanostructures, proposed as positive tribolayers with enhanced contact area and triboelectric density. The negative (biodegradable) tribolayers were prepared by electrospinning aqueous suspensions of polyvinyl alcohol and poly (ethylene oxide) reinforced with cellulose nanofibers. The charge transfer by the W-TENG reached up to 40 nC in air and retained 27 nC under 85 % relative humidity, ~5 and 7 times higher than those measured in planar TENG counterparts. A G-TENG array charging time (100-μF capacitor) of ~188 s was measured when the voltage of the capacitor raised to ~1.5 V. Overall, we introduce a new, scalable TENG system that is demonstrated for its remarkable ability to harvest blue energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI