Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis

计算机科学 图形 判决 解析 依赖关系(UML) 人工智能 依赖关系图 自然语言处理 依存语法 理论计算机科学
作者
Yuan Li,Jin Wang,Liang-Chih Yu,Xuejie Zhang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (1): 140-153 被引量:12
标识
DOI:10.1109/tai.2022.3227535
摘要

Aspect-level sentiment classification (ASC) is designed to identify the sentiment orientation of given aspect terms in a sentence. Previous neural networks have used attention mechanisms to align context words with the appropriate aspect terms. Without considering syntactic dependencies, these models may erroneously focus on context words that are not related to the aspect terms. To address this issue, the graph convolution network (GCN) and the graph attention network (GAT) are proposed to build a graph based on the dependency parse tree, allowing the representations of context words to be propagated to the aspect terms according to their syntactic dependencies. However, these models consider all syntactic dependencies to be of the same type, and thus may result in inappropriate propagation of word representations in the graph. To further distinguish between the syntactic dependencies, this study proposes a syntactic graph attention network (SGAN) to incorporate the knowledge of dependency types into the GAT. The dependency types are modeled as edge embeddings to learn the attention weight of each edge according to its dependency type. By considering different dependency types and their weights, the proposed method can block inappropriate propagation to better associate the context words to aspect terms. To increase training process stability and enrich the diversity of graph representations, a weighted multihead attention is applied to compose the graph representations generated by different heads. The experimental results on five benchmark datasets show that the SGAN yields more accurate results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助咕噜咕噜采纳,获得10
刚刚
1秒前
万能图书馆应助一三五采纳,获得10
1秒前
2秒前
3秒前
3秒前
GS11发布了新的文献求助10
4秒前
甜崽完成签到,获得积分10
4秒前
4秒前
独摇之完成签到,获得积分10
4秒前
5秒前
噢噢完成签到,获得积分20
5秒前
5秒前
强风吹拂完成签到,获得积分10
5秒前
888发布了新的文献求助30
6秒前
LYL发布了新的文献求助10
7秒前
甜崽发布了新的文献求助10
7秒前
共享精神应助Math4396采纳,获得10
8秒前
wodeqiche2007发布了新的文献求助10
8秒前
周周发布了新的文献求助30
8秒前
9秒前
1dsfdcsa发布了新的文献求助10
10秒前
10秒前
13秒前
13秒前
小新卖蜡笔完成签到,获得积分10
14秒前
大勺子发布了新的文献求助10
14秒前
所所应助格调采纳,获得10
14秒前
terry完成签到,获得积分10
16秒前
莫问今生完成签到,获得积分10
17秒前
123完成签到,获得积分10
17秒前
领导范儿应助刘一三采纳,获得10
18秒前
breeze发布了新的文献求助10
18秒前
AiX-zzzzz发布了新的文献求助10
18秒前
19秒前
碧蓝筝发布了新的文献求助10
24秒前
24秒前
宗语雪完成签到,获得积分10
25秒前
25秒前
GS11完成签到,获得积分10
26秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144