亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Research progress on identification methods of growth years of traditional Chinese medicinal materials].

鉴定(生物学) 传统医学 数据科学 计算机科学 医学 生物 植物
标识
DOI:10.19540/j.cnki.cjcmm.20201223.102
摘要

The growth years of traditional Chinese medicinal materials are closely related to their quality, which directly affects the efficacy and safety of clinical medication. Therefore, it is particularly important to establish an identification method for the growth years of traditional Chinese medicinal materials. In this review, the identification methods for the growth years of traditional Chinese medicinal materials were summarized systematically, and were divided into four types according to the identification principles and methods: traditional identification, molecular identification, physical/chemical identification, and integrated identification. Relying on rich experience, objective molecular markers, various physical/chemical methods and integrated identification techniques(including infrared spectroscopy, nuclear magnetic resonance spectroscopy, high performance liquid chromatography, gas chromatography, mass spectrometry, bionic identification technology and their tandem technologies, etc.), the differences of characters or chemical fingerprints were compared in depth. The growth years of traditional Chinese medicinal materials were quickly identified or predicted by the appearance and characters, the whole fingerprint information or the content of specific chemical markers, and their content ratios. Through the case analysis of mature varieties, we intend to promote the establishment of a perfect technology system for the identification of the growth years of traditional Chinese medicinal materials, and to provide a reference for other perennial herbal materials, finally resulting in the accurate and precise quality control of traditional Chinese medicinal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jim完成签到,获得积分10
11秒前
32秒前
SHlby发布了新的文献求助10
37秒前
40秒前
andrele发布了新的文献求助10
44秒前
婉晴发布了新的文献求助30
47秒前
科研通AI5应助SHlby采纳,获得10
1分钟前
2分钟前
nini发布了新的文献求助10
2分钟前
热情梦玉完成签到,获得积分10
2分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
2分钟前
mi关闭了mi文献求助
2分钟前
nini发布了新的文献求助10
2分钟前
andrele发布了新的文献求助10
3分钟前
豆豆完成签到 ,获得积分10
3分钟前
科研通AI5应助nini采纳,获得10
3分钟前
mi发布了新的文献求助10
3分钟前
F7erxl完成签到,获得积分10
3分钟前
热情梦玉发布了新的文献求助200
3分钟前
bc应助科研通管家采纳,获得10
4分钟前
亲亲佳人完成签到,获得积分20
4分钟前
andrele发布了新的文献求助10
4分钟前
4分钟前
wesley完成签到 ,获得积分10
4分钟前
~静发布了新的文献求助10
4分钟前
4分钟前
nini发布了新的文献求助10
4分钟前
nini完成签到,获得积分10
5分钟前
科研猫头鹰完成签到,获得积分10
5分钟前
传奇3应助铭铭铭采纳,获得10
7分钟前
婉晴发布了新的文献求助10
7分钟前
7分钟前
7分钟前
ch发布了新的文献求助10
7分钟前
铭铭铭发布了新的文献求助10
7分钟前
隐形曼青应助nnfreya采纳,获得10
7分钟前
铭铭铭完成签到,获得积分10
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
CipherSage应助科研通管家采纳,获得10
8分钟前
8分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830415
求助须知:如何正确求助?哪些是违规求助? 3372805
关于积分的说明 10475376
捐赠科研通 3092588
什么是DOI,文献DOI怎么找? 1702152
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771093