工具变量
协变量
非参数统计
估计员
数学
正规化(语言学)
维数之咒
参数统计
加性模型
一致性(知识库)
应用数学
计量经济学
统计
计算机科学
人工智能
几何学
作者
Peixin Zhao,Junqi Wang,Xinrong Tang,Weiming Yang
标识
DOI:10.1080/03610918.2021.1965166
摘要
Under ultrahigh dimensional instrumental variables, we consider the estimation for a class of partially linear models with endogenous covariates. To overcome the difficulty of ultrahigh dimensionality of the instrumental variables, we propose a double penalized regularization estimation procedure for identifying the optimal instrumental variables, and estimating covariate effects of the parametric and nonparametric components. With some regularity conditions, some asymptotic properties of the proposed estimation are derived, such as the consistency of the resulting estimators for parametric and nonparametric components. Lastly, we examine the finite sample performance of the proposed method by some simulation studies and a real data analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI