控制理论(社会学)
控制器(灌溉)
自适应控制
最大功率点跟踪
光伏系统
李雅普诺夫函数
Lyapunov稳定性
人工神经网络
计算机科学
控制工程
惯性
工程类
电压
非线性系统
控制(管理)
逆变器
人工智能
物理
电气工程
经典力学
量子力学
农学
生物
作者
Meher Preetam Korukonda,Ravi Prakash,Suvendu Samanta,Laxmidhar Behera
标识
DOI:10.1109/tste.2021.3123184
摘要
Unknown system parameters and varying disturbances are detrimental to the stability of low-inertia systems like standalone photovoltaic distributed generation systems (SPVDG). In this paper, a model-free adaptive neural controller (ANC) is proposed for the maximum power point tracking (MPPT) and grid voltage control of an SPVDG whose system model is unknown and subjected to varying disturbances. This helps in making the system more robust to sensor failures. The neural network weight update laws of the controller are derived using the Lyapunov stability criterion. It is shown that the proposed controller ensures the uniformly ultimately boundedness (UUB) of all states of the resulting closed-loop system. The performance of the proposed controller is evaluated in simulations against two other state-of-the-art controllers in the presence of disturbance and parameter intermittencies.
科研通智能强力驱动
Strongly Powered by AbleSci AI