Automated vessel segmentation in lung CT and CTA images via deep neural networks

分割 卷积神经网络 Sørensen–骰子系数 计算机科学 人工智能 深度学习 人工神经网络 基本事实 模式识别(心理学) 计算机断层血管造影 图像分割 计算机断层摄影术 放射科 医学
作者
Wenjun Tan,Luqian Zhou,Xiaoshuo Li,Xiaoyu Yang,Yufei Chen,Jinzhu Yang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (6): 1123-1137 被引量:16
标识
DOI:10.3233/xst-210955
摘要

The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research.Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances.First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation rate and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks.By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80.Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助清新的音响采纳,获得10
1秒前
柔之发布了新的文献求助10
1秒前
TIGun发布了新的文献求助10
4秒前
5秒前
5秒前
领导范儿应助123123采纳,获得10
6秒前
7秒前
7秒前
8秒前
BOB发布了新的文献求助10
12秒前
豌豆发布了新的文献求助10
13秒前
sunshine发布了新的文献求助10
13秒前
13秒前
14秒前
大个应助豌豆采纳,获得10
17秒前
yanna发布了新的文献求助10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得50
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
Lucas应助123123采纳,获得10
18秒前
机智的水风完成签到,获得积分20
22秒前
默默的惜灵完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
脑洞疼应助清新的音响采纳,获得10
24秒前
高阿松大完成签到,获得积分10
25秒前
26秒前
Joe发布了新的文献求助10
27秒前
BOB完成签到 ,获得积分10
27秒前
28秒前
29秒前
yanna完成签到,获得积分10
29秒前
vanHaren发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366