Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network

计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 断层(地质) 学习迁移 方位(导航) 特征提取 人工神经网络 机器学习 地质学 地震学
作者
Zhihao Chen,Jian Cen,Jianbin Xiong
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 150248-150261 被引量:104
标识
DOI:10.1109/access.2020.3016888
摘要

Due to the advantage of automatically extracting features from raw data, deep learning (DL) has been increasingly favored in the field of machine fault diagnosis. However, DL exposes the problems of large sample size and long training time, and in actual working conditions, the amount of labeled fault data available is relatively small, so a DL model of good generalization and high accuracy is difficult to be trained. In order to solve these problems, a deep transfer convolutional neural network (DTCNN) is proposed in this research. ResNet-50 is selected as the pre-trained model of deep convolutional neural network, and is transferred to solve the problem of bearing fault classification based on the idea of transfer learning. Firstly, raw fault signals are converted into time-frequency images by using continuous wavelet transform (CWT). Then, the images are further converted into RGB formats, which are used as the input of DTCNN. Finally, an end-to-end fault diagnosis model based on DTCNN is designed. The proposed method is validated on two datasets collected from motor bearing and self-priming centrifugal pump, respectively. Most sub-datasets from motor bearing show the prediction accuracies near 100%, and in the self-priming centrifugal pump dataset, we achieve improvement in accuracy from 99.48%±0.1966 to 99.98%±0.0332. The experimental results demonstrate that the proposed method outperforms other DL methods and traditional machine-learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助困困包采纳,获得50
刚刚
MetaMysteria完成签到,获得积分10
2秒前
Aaron完成签到,获得积分10
3秒前
科研通AI2S应助丽丽的账号采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得100
5秒前
共享精神应助科研通管家采纳,获得10
6秒前
元谷雪应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
舒适的黑裤完成签到,获得积分10
10秒前
李健的小迷弟应助1229采纳,获得10
13秒前
茶米发布了新的文献求助10
13秒前
13秒前
14秒前
Nian_xinyue完成签到 ,获得积分10
16秒前
莫茹发布了新的文献求助10
19秒前
20秒前
小赖想睡觉完成签到,获得积分20
21秒前
25秒前
Lily发布了新的文献求助10
25秒前
慕青应助lzy采纳,获得10
25秒前
30秒前
Abby发布了新的文献求助20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454