Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model

光学相干层析成像 计算机科学 分割 人工智能 支架 计算机视觉 卷积神经网络 放射科 医学 模式识别(心理学)
作者
Peng Wu,Juan Luis Gutiérrez‐Chico,Hélène Tauzin,Wei Yang,Yingguang Li,Wei Yu,Miao Chu,Benoît Guillon,Jingfeng Bai,Nicolas Meneveau,William Wijns,Shengxian Tu
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:11 (6): 3374-3374 被引量:21
标识
DOI:10.1364/boe.390113
摘要

Intravascular optical coherence tomography (IVOCT) can accurately assess stent apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize the risk of device failure. This paper presents a deep convolutional based model for automatic detection and segmentation of stent struts. The input of pseudo-3D images aggregated the information from adjacent frames to refine the probability of strut detection. In addition, multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and refine the segmentation of strut contours. After training, the model was independently tested in 21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision, 0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms. This performance was robust and homogenous among IVOCT pullbacks with different sources of acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging scenarios). In addition, excellent agreement between the model and a commercialized software was observed in the quantification of clinically relevant parameters. In conclusion, the deep-convolutional model can accurately detect stent struts in IVOCT images, thus enabling the fully-automatic quantification of stent parameters in an extremely short time. It might facilitate the application of quantitative IVOCT analysis in real-world clinical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助柔弱熊猫采纳,获得10
1秒前
1秒前
科研通AI5应助称心涵柳采纳,获得10
1秒前
2秒前
风趣乐天发布了新的文献求助50
3秒前
明翔发布了新的文献求助10
3秒前
6秒前
NiKi完成签到 ,获得积分10
6秒前
kevin发布了新的文献求助10
7秒前
自信项链发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
why完成签到 ,获得积分10
11秒前
明翔完成签到,获得积分10
11秒前
Owen应助哈理老萝卜采纳,获得10
12秒前
纳纳椰发布了新的文献求助10
13秒前
kevin完成签到,获得积分20
13秒前
马大王发布了新的文献求助10
14秒前
浅梦完成签到,获得积分10
17秒前
昏睡的蟠桃应助天玄采纳,获得150
17秒前
18秒前
19秒前
23秒前
23秒前
23秒前
聪明乐巧完成签到,获得积分10
24秒前
24秒前
深情的思雁完成签到,获得积分10
24秒前
张文静发布了新的文献求助10
24秒前
Wuhuijing发布了新的文献求助10
25秒前
25秒前
27秒前
Orange应助仁爱的咖啡采纳,获得10
29秒前
29秒前
ysjx发布了新的文献求助10
30秒前
SUSUMA发布了新的文献求助30
30秒前
LLsophia完成签到,获得积分20
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800187
求助须知:如何正确求助?哪些是违规求助? 3345479
关于积分的说明 10325346
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680695
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763539