正交调幅
计算机科学
卡姆
水准点(测量)
人工智能
调制(音乐)
正交(天文学)
模式识别(心理学)
卷积神经网络
深度学习
趋同(经济学)
频道(广播)
电子工程
电信
误码率
工程类
美学
哲学
经济增长
经济
地理
大地测量学
作者
Jialang Xu,Chunbo Luo,Gerard Parr,Yang Luo
标识
DOI:10.1109/lwc.2020.2999453
摘要
Automatic modulation recognition (AMR) plays a vital role in modern communication systems. This letter proposes a novel three-stream deep learning framework to extract the features from individual and combined in-phase/quadrature (I/Q) symbols of the modulated data. The proposed framework integrates one-dimensional (1D) convolutional, two-dimensional (2D) convolutional and long short-term memory (LSTM) layers to extract features more effectively from a time and space perspective. Experiments on the benchmark dataset show the proposed framework has efficient convergence speed and achieves improved recognition accuracy, especially for the signals modulated by higher dimensional schemes such as 16 quadrature amplitude modulation (16-QAM) and 64-QAM.
科研通智能强力驱动
Strongly Powered by AbleSci AI