微生物群
调解
计算机科学
选择(遗传算法)
肠道微生物群
路径分析(统计学)
置信区间
计算生物学
统计
生物信息学
生物
数学
人工智能
机器学习
政治学
法学
作者
Haixiang Zhang,Jun Chen,Yang Feng,Chan Wang,Huilin Li,Lei Liu
摘要
The microbiome plays an important role in human health by mediating the path from environmental exposures to health outcomes. The relative abundances of the high‐dimensional microbiome data have an unit‐sum restriction, rendering standard statistical methods in the Euclidean space invalid. To address this problem, we use the isometric log‐ratio transformations of the relative abundances as the mediator variables. To select significant mediators, we consider a closed testing‐based selection procedure with desirable confidence. Simulations are provided to verify the effectiveness of our method. As an illustrative example, we apply the proposed method to study the mediation effects of murine gut microbiome between subtherapeutic antibiotic treatment and body weight gain, and identify Coprobacillus and Adlercreutzia as two significant mediators.
科研通智能强力驱动
Strongly Powered by AbleSci AI