Applying machine learning algorithms in estimating the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping processes

人工神经网络 计算机科学 机器学习 稳健性(进化) 算法 重采样 人工智能 化学 生物化学 基因
作者
Yongliang Yan,Tobias Mattisson,Patrick Moldenhauer,Edward J. Anthony,Peter T. Clough
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:387: 124072-124072 被引量:44
标识
DOI:10.1016/j.cej.2020.124072
摘要

Heterogeneous, multi-component materials such as industrial tailings or by-products, along with naturally occurring materials, such as ores, have been intensively investigated as candidate oxygen carriers for chemical-looping processes. However, these materials have highly variable compositions, and this strongly influences their chemical-looping performance. Here, using machine learning techniques, we estimate the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping. Experimental data for 19 manganese ores chosen as potential chemical-looping oxygen carriers were used to create a so-called training database. This database has been used to train several supervised artificial neural network models (ANN), which were used to predict the reactivity of the oxygen carriers with different fuels and the oxygen transfer capacity with only the knowledge of reactor bed temperature, elemental composition, and mechanical properties of the manganese ores. This novel approach explores ways of dealing with the training dataset, learning algorithms and topology of ANN models to achieve enhanced prediction precision. Stacked neural networks with a bootstrap resampling technique have been applied to achieve high precision and robustness on new input data, and the confidence intervals were used to assess the precision of these predictions. The current results indicate that the best trained ANNs can produce highly accurate predictions for both the training database and the unseen data with the high coefficient of determination (R2 = 0.94) and low mean absolute error (MAE = 0.057). We envision that the application of these ANNs and other machine learning algorithms will accelerate the development of oxygen carrying materials for a range of chemical-looping applications and offer a rapid screening tool for new potential oxygen carriers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
vn完成签到,获得积分10
1秒前
科研通AI5应助努力采纳,获得10
1秒前
阿盛完成签到,获得积分10
1秒前
小刘科研顺利完成签到 ,获得积分10
3秒前
qiao应助tsukinineko采纳,获得10
5秒前
iNk应助友好的难敌采纳,获得10
7秒前
8秒前
8秒前
ixueyi完成签到,获得积分10
9秒前
11秒前
小魏给小魏的求助进行了留言
13秒前
科研通AI5应助想吃榴莲采纳,获得30
13秒前
个性跳跳糖完成签到,获得积分10
17秒前
外星人完成签到 ,获得积分10
18秒前
yunshan完成签到,获得积分10
19秒前
20秒前
liu完成签到,获得积分10
21秒前
慕青应助贾明霞采纳,获得10
22秒前
yunshan发布了新的文献求助10
25秒前
顾瞻完成签到,获得积分10
29秒前
29秒前
30秒前
自己哭哭完成签到 ,获得积分10
30秒前
pokexuejiao发布了新的文献求助30
33秒前
35秒前
35秒前
孙义善发布了新的文献求助10
36秒前
36秒前
贾明霞完成签到,获得积分10
36秒前
坚强觅珍完成签到 ,获得积分10
36秒前
nulinuli完成签到 ,获得积分10
37秒前
研友_Zzrx6Z发布了新的文献求助10
39秒前
努力发布了新的文献求助10
41秒前
向日繁花发布了新的文献求助10
41秒前
曾经不言发布了新的文献求助10
41秒前
45秒前
46秒前
诺奖离我十万八千里完成签到,获得积分10
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751