Differentiation of Benign from Malignant Pulmonary Nodules by Using a Convolutional Neural Network to Determine Volume Change at Chest CT

医学 磨玻璃样改变 置信区间 放射科 核医学 结核(地质) 肺孤立结节 体积热力学 卷积神经网络 计算机断层摄影术 人工智能 腺癌 内科学 癌症 古生物学 计算机科学 生物 物理 量子力学
作者
Yoshiharu Ohno,Kota Aoyagi,Atsushi Yaguchi,Shinichiro Seki,Yoshiko Ueno,Yuji Kishida,Daisuke Takenaka,Takeshi Yoshikawa
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (2): 432-443 被引量:28
标识
DOI:10.1148/radiol.2020191740
摘要

Background Deep learning may help to improve computer-aided detection of volume (CADv) measurement of pulmonary nodules at chest CT. Purpose To determine the efficacy of a deep learning method for improving CADv for measuring the solid and ground-glass opacity (GGO) volumes of a nodule, doubling time (DT), and the change in volume at chest CT. Materials and Methods From January 2014 to December 2016, patients with pulmonary nodules at CT were retrospectively reviewed. CADv without and with a convolutional neural network (CNN) automatically determined total nodule volume change per day and DT. Area under the curves (AUCs) on a per-nodule basis and diagnostic accuracy on a per-patient basis were compared among all indexes from CADv with and without CNN for differentiating benign from malignant nodules. Results The CNN training set was 294 nodules in 217 patients, the validation set was 41 nodules in 32 validation patients, and the test set was 290 nodules in 188 patients. A total of 170 patients had 290 nodules (mean size ± standard deviation, 11 mm ± 5; range, 4–29 mm) diagnosed as 132 malignant nodules and 158 benign nodules. There were 132 solid nodules (46%), 106 part-solid nodules (36%), and 52 ground-glass nodules (18%). The test set results showed that the diagnostic performance of the CNN with CADv for total nodule volume change per day was larger than DT of CADv with CNN (AUC, 0.94 [95% confidence interval {CI}: 0.90, 0.96] vs 0.67 [95% CI: 0.60, 0.74]; P < .001) and CADv without CNN (total nodule volume change per day: AUC, 0.69 [95% CI: 0.62, 0.75]; P < .001; DT: AUC, 0.58 [95% CI: 0.51, 0.65]; P < .001). The accuracy of total nodule volume change per day of CADv with CNN was significantly higher than that of CADv without CNN (P < .001) and DT of both methods (P < .001). Conclusion Convolutional neural network is useful for improving accuracy of computer-aided detection of volume measurement and nodule differentiation capability at CT for patients with pulmonary nodules. © RSNA, 2020 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的冰绿完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
吐丝麵包发布了新的文献求助10
1秒前
2秒前
蝉鸣完成签到,获得积分10
3秒前
萱萱完成签到,获得积分10
3秒前
4秒前
核桃发布了新的文献求助10
4秒前
5秒前
乐观的雁兰完成签到,获得积分10
5秒前
iNk应助坚定迎天采纳,获得20
5秒前
nihao完成签到,获得积分10
5秒前
6秒前
小羊发布了新的文献求助30
6秒前
萱萱发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
斯文败类应助枫叶的脚步采纳,获得10
10秒前
10秒前
jhlz5879完成签到,获得积分0
11秒前
852应助枫林醉采纳,获得10
14秒前
玖东发布了新的文献求助10
15秒前
15秒前
16秒前
allen7u完成签到,获得积分10
17秒前
小事发布了新的文献求助50
18秒前
19秒前
20秒前
FashionBoy应助微微采纳,获得10
20秒前
玖东完成签到,获得积分10
21秒前
175完成签到,获得积分20
22秒前
科研通AI5应助shuaxin456采纳,获得10
23秒前
26秒前
顺利的琳应助飞快的寒香采纳,获得10
26秒前
tang_c完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
31秒前
wmwm发布了新的文献求助20
33秒前
叶123完成签到,获得积分10
33秒前
微微完成签到,获得积分20
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212653
求助须知:如何正确求助?哪些是违规求助? 3746898
关于积分的说明 11789305
捐赠科研通 3414479
什么是DOI,文献DOI怎么找? 1873737
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837403