An Optimization Strategy for Weighted Extreme Learning Machine based on PSO

极限学习机 人工智能 机器学习 计算机科学 人工神经网络 一般化 控制论 遗传算法 算法 数学 数学分析
作者
Kai Hu,Zhao-Di Zhou,Liguo Weng,Jia Liu,Lihua Wang,Yang Su,Ying Yang
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:31 (01): 1751001-1751001 被引量:21
标识
DOI:10.1142/s0218001417510016
摘要

Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous experiences. Among numerous machine learning algorithms, Weighted Extreme Learning Machine (WELM) is one of the famous cases recently. It not only has Extreme Learning Machine (ELM)’s extremely fast training speed and better generalization performance than traditional Neuron Network (NN), but also has the merit in handling imbalance data by assigning more weight to minority class and less weight to majority class. But it still has the limitation of its weight generated according to class distribution of training data, thereby, creating dependency on input data [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. This leads to the lack of finding optimal weight at which good generalization performance could be achieved [R. Sharma and A. S. Bist, Genetic algorithm based weighted extreme learning machine for binary imbalance learning, 2015 Int. Conf. Cognitive Computing and Information Processing (CCIP) (IEEE, 2015), pp. 1–6; N. Koutsouleris, Classification/machine learning approaches, Annu. Rev. Clin. Psychol. 13(1) (2016); G. Dudek, Extreme learning machine for function approximation–interval problem of input weights and biases, 2015 IEEE 2nd Int. Conf. Cybernetics (CYBCONF) (IEEE, 2015), pp. 62–67; N. Zhang, Y. Qu and A. Deng, Evolutionary extreme learning machine based weighted nearest-neighbor equality classification, 2015 7th Int. Conf. Intelligent Human-Machine Systems and Cybernetics (IHMSC), Vol. 2 (IEEE, 2015), pp. 274–279]. To solve it, a hybrid algorithm which composed by WELM algorithm and Particle Swarm Optimization (PSO) is proposed. Firstly, it distributes the weight according to the number of different samples, determines weighted method; Then, it combines the ELM model and the weighted method to establish WELM model; finally it utilizes PSO to optimize WELM’s three parameters (input weight, bias, the weight of imbalanced training data). Experiment data from both prediction and recognition show that it has better performance than classical WELM algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思与省完成签到,获得积分10
刚刚
刚刚
Tina完成签到,获得积分10
刚刚
冥冥之极为昭昭应助朝气采纳,获得10
1秒前
zyw发布了新的文献求助10
1秒前
洁净乐松完成签到,获得积分10
1秒前
龙虾发票完成签到,获得积分10
1秒前
王大禹发布了新的文献求助10
2秒前
左丘夜玉发布了新的文献求助10
2秒前
2秒前
shilong.yang发布了新的文献求助30
3秒前
4秒前
加油干完成签到 ,获得积分10
4秒前
情怀应助GK采纳,获得10
4秒前
花鸟风月evereo完成签到,获得积分10
4秒前
旗树树发布了新的文献求助10
4秒前
5秒前
昵称完成签到,获得积分10
6秒前
洋芋梦女完成签到 ,获得积分10
6秒前
隐形曼青应助xmyyy采纳,获得10
6秒前
莫愁发布了新的文献求助20
6秒前
6秒前
xytx发布了新的文献求助10
7秒前
文艺宛海发布了新的文献求助10
7秒前
sandyleung完成签到,获得积分10
8秒前
AAHPH发布了新的文献求助10
8秒前
8秒前
打打应助腌黄瓜女士采纳,获得10
9秒前
郭mm发布了新的文献求助10
9秒前
小蔡完成签到,获得积分10
9秒前
下雨发布了新的文献求助10
9秒前
9秒前
煎饼煎饼发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
左丘夜玉完成签到,获得积分10
12秒前
洋芋梦女关注了科研通微信公众号
12秒前
12秒前
聪慧的如彤完成签到,获得积分10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092744
求助须知:如何正确求助?哪些是违规求助? 3631446
关于积分的说明 11509895
捐赠科研通 3342397
什么是DOI,文献DOI怎么找? 1837108
邀请新用户注册赠送积分活动 904934
科研通“疑难数据库(出版商)”最低求助积分说明 822708