Superpixel-Based Multitask Learning Framework for Hyperspectral Image Classification

高光谱成像 人工智能 判别式 支持向量机 模式识别(心理学) 计算机科学 维数之咒 计算机视觉
作者
Sen Jia,Bin Deng,Jiasong Zhu,Xiuping Jia,Qingquan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (5): 2575-2588 被引量:46
标识
DOI:10.1109/tgrs.2017.2647815
摘要

Due to the high spectral dimensionality of hyperspectral images as well as the difficult and time-consuming process of collecting sufficient labeled samples in practice, the small sample size scenario is one crucial problem and a challenging issue for hyperspectral image classification. Fortunately, the structure information of materials, reflecting region of homogeneity in the spatial domain, offers an invaluable complement to the spectral information. Assuming some spatial regularity and locality of surface materials, it is reasonable to segment the image into different homogeneous parts in advance, called superpixel, which can be used to improve the classification performance. In this paper, a superpixel-based multitask learning framework has been proposed for hyperspectral image classification. Specifically, a set of 2-D Gabor filters are first applied to hyperspectral images to extract discriminative features. Meanwhile, a superpixel map is generated from the hyperspectral images. Second, a superpixel-based spatial-spectral Schroedinger eigenmaps (S 4 E) method is adopted to effectively reduce the dimensions of each extracted Gabor cube. Finally, the classification is carried out by a support vector machine (SVM)-based multitask learning framework. The proposed approach is thus termed Gabor S 4 E and SVM-based multitask learning (GS 4 E-MTLSVM). A series of experiments is conducted on three real hyperspectral image data sets to demonstrate the effectiveness of the proposed GS 4 E-MTLSVM approach. The experimental results show that the performance of the proposed GS 4 E-MTLSVM is better than those of several state-of-the-art methods, while the computational complexity has been greatly reduced, compared with the pixel-based spatial-spectral Schroedinger eigenmaps method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
1秒前
2秒前
3秒前
赘婿应助必行采纳,获得10
4秒前
hui发布了新的文献求助10
4秒前
YW发布了新的文献求助10
4秒前
清脆代桃完成签到 ,获得积分10
5秒前
hzs完成签到,获得积分10
6秒前
6秒前
7秒前
搜集达人应助innocence采纳,获得50
8秒前
海王星发布了新的文献求助10
8秒前
林悦涵完成签到,获得积分10
8秒前
9秒前
秤子发布了新的文献求助10
9秒前
阿蒙完成签到,获得积分10
10秒前
舒服的友安完成签到,获得积分10
10秒前
YW完成签到,获得积分10
11秒前
瞿寒发布了新的文献求助10
12秒前
林生完成签到 ,获得积分10
12秒前
卡卡西应助非主流的毛线采纳,获得30
13秒前
zq完成签到,获得积分10
14秒前
博qb完成签到,获得积分10
14秒前
14秒前
海王星完成签到,获得积分10
15秒前
15秒前
Snail完成签到,获得积分10
16秒前
小叶间静脉完成签到,获得积分10
17秒前
18秒前
pqy发布了新的文献求助10
19秒前
辛勤怀绿完成签到,获得积分10
20秒前
21秒前
酷波er应助玖兰采纳,获得10
22秒前
Snail发布了新的文献求助30
23秒前
24秒前
ddp完成签到,获得积分20
24秒前
24秒前
充电宝应助粗犷的念柏采纳,获得10
24秒前
勤劳的筝发布了新的文献求助10
24秒前
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243