Reply to ‘Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists’ by Haenssle et al.

黑色素瘤 机器学习 计算机科学 人工神经网络 皮肤病科 模式识别(心理学)
作者
Luke Oakden-Rayner
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:30 (5): 854-854 被引量:14
标识
DOI:10.1093/annonc/mdy519
摘要

In a recently published article in the Annals of Oncology [1.Haenssle H. Fink C. Schneiderbauer R. et al.Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.Ann Oncol. 2018; 29: 1836-1842Abstract Full Text Full Text PDF PubMed Scopus (649) Google Scholar], Haenssle et al. compare the performance of a deep learning model with that of 58 dermatologists. The article was of high general quality, yet their aspects of methodology requires clarification. First, they underestimate human performance by using a metric that they call the receiver operating characteristic (ROC) area. This is not the same metric as the ROC-area under the curve (AUC), which they compare it to. The ROC-AUC is the calculated area under the ROC curve, whereas the ROC area is the average of sensitivity and specificity at a given operating point. Comparing two different metrics as if they are the same is inappropriate. In this article, we as readers cannot calculate the ROC-AUC for the dermatologist group with the data provided, but we can calculate the ROC-area for the model at the specified operating points. These are presented in Table 1, which shows no difference between the model and dermatologists in these experiments.Table 1The performance of the CNN and dermatologists on the taskSensitivitySpecificityAUCROC areaCNN (0.5 threshold)9563.88679aROC area for the model (not presented in the article).Derm L186.671.3–79AUC, area under the curve; ROC, receiver operating characteristic curve.a ROC area for the model (not presented in the article). Open table in a new tab AUC, area under the curve; ROC, receiver operating characteristic curve. The authors also present sensitivity and specificity results at the level of human sensitivity. Second is that the mechanism for selecting this operating point is not stated, but it is likely this occurred post-experiment. We see evidence for this in the section ‘Diagnostic accuracy of CNN versus dermatologists’, where several operating points are chosen for the AI system, which appear to exactly match the level of human sensitivity. If this decision was made using the training data, the sensitivity on the test data would almost certainly be slightly different than the human level. I note that in Figure 2A of Haenssle et al., the ROC curve is very steep in both directions in the region of interest, and a very small change in operating point could lead to a very large reduction in either specificity or sensitivity (into the 70s for both metrics). This suggests that the model performance may be significantly overestimated. I expect the model of Haenssle et al. performs very well, but the methods applied overestimate the performance of the model and underestimate the performance of the human experts. The methodologies used require clarification and may raise questions about the validity of the results and the conclusions of the article. None declared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mawanyu发布了新的文献求助10
1秒前
亦楚bank完成签到,获得积分10
3秒前
船船发布了新的文献求助10
4秒前
6秒前
安详的惜梦应助郭星星采纳,获得10
7秒前
7秒前
无花果应助船船采纳,获得10
9秒前
blind发布了新的文献求助10
9秒前
火星上雨珍完成签到,获得积分10
9秒前
LZ发布了新的文献求助10
12秒前
李广辉发布了新的文献求助10
12秒前
zzz完成签到 ,获得积分10
14秒前
Steven发布了新的文献求助10
16秒前
lalala完成签到,获得积分10
17秒前
斯文败类应助老黑采纳,获得10
18秒前
李爱国应助爱听歌笑寒采纳,获得10
22秒前
乘风破浪完成签到,获得积分10
22秒前
24秒前
25秒前
王博士完成签到 ,获得积分10
28秒前
ray发布了新的文献求助10
30秒前
PMoLGGYM2021发布了新的文献求助10
30秒前
31秒前
科研通AI5应助heli采纳,获得10
31秒前
俭朴的跳跳糖完成签到 ,获得积分10
32秒前
32秒前
34秒前
liuwenjie发布了新的文献求助10
35秒前
36秒前
所所应助LZ采纳,获得10
37秒前
Yolo发布了新的文献求助10
40秒前
40秒前
wanci应助李广辉采纳,获得10
41秒前
苏silence发布了新的文献求助10
42秒前
木穹完成签到,获得积分10
45秒前
45秒前
fanlin完成签到,获得积分0
45秒前
46秒前
liuwenjie完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778908
求助须知:如何正确求助?哪些是违规求助? 3324476
关于积分的说明 10218591
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440