温室气体
环境科学
甲烷
大气科学
气候变化
大气化学
气象学
化学
物理
地质学
臭氧
海洋学
有机化学
作者
Michael J. Prather,Christopher D. Holmes,Juno Hsu
摘要
Knowledge of the atmospheric chemistry of reactive greenhouse gases is needed to accurately quantify the relationship between human activities and climate, and to incorporate uncertainty in our projections of greenhouse gas abundances. We present a method for estimating the fraction of greenhouse gases attributable to human activities, both currently and for future scenarios. Key variables used to calculate the atmospheric chemistry and budgets of major non‐CO 2 greenhouse gases are codified along with their uncertainties, and then used to project budgets and abundances under the new climate‐change scenarios. This new approach uses our knowledge of changing abundances and lifetimes to estimate current total anthropogenic emissions, independently and possibly more accurately than inventory‐based scenarios. We derive a present‐day atmospheric lifetime for methane (CH 4 ) of 9.1 ± 0.9 y and anthropogenic emissions of 352 ± 45 Tg/y (64% of total emissions). For N 2 O, corresponding values are 131 ± 10 y and 6.5 ± 1.3 TgN/y (41% of total); and for HFC‐134a, the lifetime is 14.2 ± 1.5 y.
科研通智能强力驱动
Strongly Powered by AbleSci AI