反键分子轨道
过氧化氢
电负性
氧气
吸附
光化学
分子内力
材料科学
质子
质子耦合电子转移
电子转移
金属
分子
制氢
氢
活性氧
催化作用
无机化学
析氧
硫黄
化学物理
氢键
化学工程
电子
硫化氢
光催化
化学
过氧化物
分子轨道
过氧化氢
激进的
电解水
还原剂
动力学
电子供体
质子输运
纳米技术
电子传输链
作者
Zhang-Meng Liu,Guiting Lin,Wei Liu,Yunzhi Fu,Qi-Xin Zhou,Qianfeng Xia
标识
DOI:10.1002/adfm.202529335
摘要
Abstract Enhancing the photocatalytic production of hydrogen peroxide remains a critical challenge due to the slow kinetics of water oxidation and the complex dynamics of oxygen reduction. This study introduces a novel conceptual framework that uses engineered molecular defect states to precisely modulate orbital electron behavior at neighboring atomic sites. Electron‐deficient non‐metallic active centers that significantly improve water molecule adsorption and facilitate proton release; simultaneously, defect‐engineered metallic sites efficiently trap and activate oxygen molecules, promoting spin‐orbital interactions that drive the formation of reactive oxygen species. Zn 1.68 In 2.21 S 5 is using trimercaptopropionic acid as a sulfur source. The thiol‐mediated synthesis introduces both metallic and non‐metallic defect states, enabling efficient intramolecular electron transfer through orbital‐level coupling. These vacancies induce an electronegativity gradient that drives S 3 p ‐Zn 3 d orbital coupling, depleting antibonding electrons from S sites to Zn vacancies. This tuning elevates the S 3 p ‐band center, strengthening S─H ads bonds for efficient water adsorption and proton release while activating O 2 molecules, resulting in a remarkably high hydrogen peroxide production rate of 7.98 mmol g −1 h −1 achieved in O 2 ‐saturated water without sacrificial agents. This work offers a promising direction for next‐generation photocatalysts aimed at sustainable hydrogen peroxide synthesis and broader solar‐to‐chemical energy conversion applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI