Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients

卷积神经网络 人工智能 分类器(UML) 深度学习 疼痛评估 剪辑 医学 病危 面部表情 计算机科学 模式识别(心理学) 物理疗法 疼痛管理 内科学
作者
Chieh‐Liang Wu,Shufang Liu,Tian–Li Yu,Sou‐Jen Shih,Chih-Hung Chang,Shih-Fang Yang Mao,Yueh-Se Li,Hui-Jiun Chen,Chia‐Chen Chen,Wen‐Cheng Chao
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:9 被引量:19
标识
DOI:10.3389/fmed.2022.851690
摘要

Pain assessment based on facial expressions is an essential issue in critically ill patients, but an automated assessment tool is still lacking. We conducted this prospective study to establish the deep learning-based pain classifier based on facial expressions.We enrolled critically ill patients during 2020-2021 at a tertiary hospital in central Taiwan and recorded video clips with labeled pain scores based on facial expressions, such as relaxed (0), tense (1), and grimacing (2). We established both image- and video-based pain classifiers through using convolutional neural network (CNN) models, such as Resnet34, VGG16, and InceptionV1 and bidirectional long short-term memory networks (BiLSTM). The performance of classifiers in the test dataset was determined by accuracy, sensitivity, and F1-score.A total of 63 participants with 746 video clips were eligible for analysis. The accuracy of using Resnet34 in the polychromous image-based classifier for pain scores 0, 1, 2 was merely 0.5589, and the accuracy of dichotomous pain classifiers between 0 vs. 1/2 and 0 vs. 2 were 0.7668 and 0.8593, respectively. Similar accuracy of image-based pain classifier was found using VGG16 and InceptionV1. The accuracy of the video-based pain classifier to classify 0 vs. 1/2 and 0 vs. 2 was approximately 0.81 and 0.88, respectively. We further tested the performance of established classifiers without reference, mimicking clinical scenarios with a new patient, and found the performance remained high.The present study demonstrates the practical application of deep learning-based automated pain assessment in critically ill patients, and more studies are warranted to validate our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
椒盐皮皮虾完成签到 ,获得积分10
1秒前
jfw完成签到 ,获得积分10
2秒前
leo发布了新的文献求助10
6秒前
qingqingiqng完成签到,获得积分10
6秒前
7秒前
石子完成签到 ,获得积分10
8秒前
cdercder应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得10
9秒前
可耐的寒松完成签到,获得积分10
9秒前
科研人发布了新的文献求助10
9秒前
逢场作戱__完成签到 ,获得积分10
18秒前
mark33442完成签到,获得积分10
22秒前
懵懂的仙人掌完成签到,获得积分10
26秒前
mimosal完成签到,获得积分0
40秒前
葛儿完成签到 ,获得积分10
40秒前
老张完成签到 ,获得积分10
40秒前
d00007发布了新的文献求助10
41秒前
42秒前
与离完成签到 ,获得积分10
47秒前
烁果累累完成签到 ,获得积分10
53秒前
monthli完成签到,获得积分10
54秒前
贝贝完成签到 ,获得积分10
55秒前
Dash完成签到 ,获得积分10
55秒前
56秒前
d00007完成签到,获得积分20
1分钟前
1分钟前
strama完成签到,获得积分10
1分钟前
merry6669完成签到 ,获得积分10
1分钟前
HH1202完成签到 ,获得积分10
1分钟前
mimosal发布了新的文献求助30
1分钟前
1分钟前
zokor完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
杨宁完成签到 ,获得积分10
1分钟前
goodsheep完成签到 ,获得积分10
1分钟前
1分钟前
xue完成签到 ,获得积分10
1分钟前
Bin_Liu发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353