战斗或逃跑反应
环境化学
芘
压力(语言学)
苯并(a)芘
生物
化学
环境科学
生态学
生物化学
基因
哲学
语言学
有机化学
作者
Meiling Yi,Lilan Zhang,Yang Li,Yao Qian
标识
DOI:10.1016/j.jhazmat.2022.128632
摘要
Understanding the characteristics of soil microbes responding to benzo[a]pyrene (BaP) helps to deepen the knowledge of the risks of BaP to soil ecosystem. In this study, the structural, metabolic, and functional responses of soil microbial communities to BaP (8.11 mg kg−1) were investigated. Analysis of microbial community structure based on 16 S rRNA and ITS gene sequencing indicated that BaP addition enriched microbes associated with aromatic compound degradation (Sphingomonas, Bacilli, Fusarium) and oligotrophs (Blastocatellaceae, Rokubacteriales), but inhibited Cyanobacteria involved in nitrogen-fixing process. Network analysis showed that the bacterial community enhanced intraspecific cooperation, while fungal community mainly altered the keystone taxa under BaP stress. Biolog EcoPlate assay demonstrated that microbial metabolism of carbon sources, especially nitrogen-containing sources, was stimulated by BaP addition. Functional analysis based on enzyme activity tests, functional gene quantification, and function annotation showed that nitrogen-cycling processes, especially nitrogen fixation, were significantly inhibited. These results suggest that BaP-tolerant microbes may establish cooperative relationships and compete for resources and ecological niches with sensitive microbes, especially those associated with nitrogen cycling, ultimately leading to enhanced carbon source utilization and restricted nitrogen cycling. This study clearly elucidates the adaptation strategies and functional shifts of soil microbial communities to BaP contamination.
科研通智能强力驱动
Strongly Powered by AbleSci AI