High-Quality Model Aggregation for Blockchain-Based Federated Learning via Reputation-Motivated Task Participation

声誉 计算机科学 块链 质量(理念) 任务(项目管理) MNIST数据库 数据质量 可信赖性 联合学习 数据建模 计算机安全 人工智能 数据库 深度学习 业务 管理 认识论 营销 社会学 经济 社会科学 哲学 公制(单位)
作者
Jiahao Qi,Feilong Lin,Zhongyu Chen,Changbing Tang,Riheng Jia,Minglu Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (19): 18378-18391 被引量:52
标识
DOI:10.1109/jiot.2022.3160425
摘要

Federated learning is an emerging paradigm to conduct the machine learning collaboratively but avoid the leakage of original data. Then, how to motivate the data owners to participate federated learning and contribute high-quality data is the crucial issue. In this article, a blockchain-based federated learning (BFL) with a reputation mechanism for high-quality model aggregation is proposed. Specifically, the blockchain transforms the federated learning into a decentralized and trustworthy manner. Over the blockchain, federated learning tasks, undertaken by smart contracts, can be conducted transparently and fairly. Besides, a reputation-constrained data contribution and reward allocation mechanism is designed to encourage data owners to participate in BFL and contribute high-quality data. The noncooperative game is adopted to analyze the behavior strategies of data owners. The existence of the unique equilibrium is proved and the equilibrium point indicates that the data owners can acquire highest reward with the contribution of the highest quality data. Thus, the model quality of BFL is guaranteed. Finally, simulations on the public data sets (MNIST and CIFAR10) demonstrate that BFL with a reputation mechanism can well promote the high-quality model aggregation of federated learning as well as can prevent malicious nodes from corrupting the training task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoputaor完成签到 ,获得积分10
刚刚
天天快乐应助小刘采纳,获得10
2秒前
3秒前
4秒前
风中叶子发布了新的文献求助10
5秒前
7秒前
星辰大海应助六沉采纳,获得10
7秒前
坚定从波发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
嘻嘻完成签到,获得积分10
8秒前
nnn发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
StonesKing发布了新的文献求助10
12秒前
cdercder应助嘻嘻采纳,获得10
13秒前
mx完成签到,获得积分20
13秒前
西瓜完成签到 ,获得积分10
13秒前
125ljw发布了新的文献求助10
13秒前
菲菲发布了新的文献求助10
13秒前
小刘发布了新的文献求助10
13秒前
冰魂应助小董继续努力采纳,获得30
13秒前
明明完成签到,获得积分10
13秒前
14秒前
14秒前
脑洞疼应助点墨采纳,获得10
14秒前
Lucas应助点墨采纳,获得10
14秒前
mx发布了新的文献求助10
15秒前
16秒前
斯文败类应助彼岸采纳,获得10
16秒前
godsong5287发布了新的文献求助10
16秒前
17秒前
美好斓发布了新的文献求助50
17秒前
17秒前
英俊的冥发布了新的文献求助30
18秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807394
求助须知:如何正确求助?哪些是违规求助? 3352185
关于积分的说明 10357743
捐赠科研通 3068204
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810014
科研通“疑难数据库(出版商)”最低求助积分说明 765853