Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins

蛋白质组 计算生物学 葡萄孢霉素 生物 化学 色谱法 生物化学 激酶 蛋白激酶A
作者
Chengfei Ruan,Wanshan Ning,Zhen Liu,Xiaolei Zhang,Zheng Fang,Yanan Li,Yongjun Dang,Yu Xue,Mingliang Ye
出处
期刊:ACS Chemical Biology [American Chemical Society]
卷期号:17 (1): 252-262 被引量:23
标识
DOI:10.1021/acschembio.1c00936
摘要

Although thermal proteome profiling (TPP) acts as a popular modification-free approach for drug target deconvolution, some key problems are still limiting screening sensitivity. In the prevailing TPP workflow, only the soluble fractions are analyzed after thermal treatment, while the precipitate fractions that also contain abundant information of drug-induced stability shifts are discarded; the sigmoid melting curve fitting strategy used for data processing suffers from discriminations for a part of human proteome with multiple transitions. In this study, a precipitate-supported TPP (PSTPP) assay was presented for unbiased and comprehensive analysis of protein–drug interactions at the proteome level. In PSTPP, only these temperatures where significant precipitation is observed were applied to induce protein denaturation and the complementary information contained in both supernatant fractions and precipitate fractions was used to improve the screening specificity and sensitivity. In addition, a novel image recognition algorithm based on deep learning was developed to recognize the target proteins, which circumvented the problems that exist in the sigmoid curve fitting strategy. PSTPP assay was validated by identifying the known targets of methotrexate, raltitrexed, and SNS-032 with good performance. Using a promiscuous kinase inhibitor, staurosporine, we delineated 99 kinase targets with a specificity up to 83% in K562 cell lysates, which represented a significant improvement over the existing thermal shift methods. Furthermore, the PSTPP strategy was successfully applied to analyze the binding targets of rapamycin, identifying the well-known targets, FKBP1A, as well as revealing a few other potential targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qintt完成签到 ,获得积分10
3秒前
端庄栾完成签到,获得积分10
4秒前
充电宝应助等等采纳,获得10
4秒前
5秒前
bingbing完成签到,获得积分10
7秒前
oysp完成签到,获得积分10
7秒前
yuyu完成签到,获得积分10
8秒前
大地上的鱼完成签到,获得积分10
9秒前
9秒前
weiwei完成签到 ,获得积分10
10秒前
月上柳梢头A1完成签到,获得积分10
12秒前
研友_VZG7GZ应助风趣的梦露采纳,获得10
19秒前
达夫斯基完成签到,获得积分10
19秒前
唠叨的洋葱完成签到,获得积分20
20秒前
小竹子完成签到 ,获得积分10
20秒前
燕聪聪完成签到,获得积分10
20秒前
科研小菜完成签到 ,获得积分10
21秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
21秒前
Akim应助Ethan采纳,获得10
23秒前
李静完成签到,获得积分10
24秒前
善学以致用应助lx采纳,获得10
24秒前
德州老农完成签到,获得积分10
25秒前
周涛完成签到,获得积分10
25秒前
团宝妞宝完成签到,获得积分10
29秒前
山猫大王完成签到 ,获得积分10
32秒前
lucia5354完成签到,获得积分10
32秒前
科研通AI5应助Nancy采纳,获得10
32秒前
33秒前
bc应助科研通管家采纳,获得10
33秒前
bc应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
言庭兰玉完成签到,获得积分10
34秒前
若雨凌风完成签到,获得积分10
34秒前
breaks完成签到,获得积分10
34秒前
偷看星星完成签到 ,获得积分10
34秒前
务实鞅完成签到 ,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734