已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical Frequency Domain Learning: Consider Inter-class and Intra-class Frequency for Medical Image Segmentation and Classification

计算机科学 频域 卷积神经网络 人工智能 卷积(计算机科学) 分割 模式识别(心理学) 班级(哲学) 领域(数学分析) 深度学习 上下文图像分类 图像分割 人工神经网络 图像(数学) 计算机视觉 数学 数学分析
作者
Yonghao Huang,Chuan Zhou,Leiting Chen,Junjing Chen,Shanlin Lan
标识
DOI:10.1109/bibm52615.2021.9669443
摘要

Medical image segmentation and classification tasks have become increasing accurate by employing deep neural networks. However, existing convolution neural networks models (CNNs) are challenging to achieve quite satisfactory results as medical objects and backgrounds are usually indistinguishable in spatial-domain images. In comparison, it is easier to analyze complex objects in frequency-domain images as different object information is retained in different frequency components. However, training CNNs in the frequency domain requires complex modification for network architecture. Thus, this paper proposes a method of learning in the frequency domain to train CNNs called Frequency domain attention (FDAM) Workflow, which only requires little parameters rise and modification in CNNs. FDAM utilizes the relationship of intra-class frequency to retain valuable frequency information and suppress trivial ones. Furthermore, to reduce computation, a Gate module is designed for deleting redundant frequency channels by exploiting the relationship of inter-class frequency. The proposed methods can be applied in various CNNs, such as U-Net, ResNet and DenseNet, while accepting frequency-domain data as input. Experiment results show a significant performance improvement compared to original CNNs for retinal vessel segmentation, glaucoma classification and pneumonia classification. Specifically, Gate module can improve accuracy while using less input data size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2568269431发布了新的文献求助10
刚刚
sum发布了新的文献求助10
4秒前
JamesPei应助一二采纳,获得10
4秒前
helloworld完成签到,获得积分10
8秒前
风风发布了新的文献求助20
9秒前
狂野怜蕾发布了新的文献求助10
10秒前
我是老大应助阳光采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
慕青应助怕黑的孤菱采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
汉堡包应助科研通管家采纳,获得10
13秒前
16秒前
19秒前
津津完成签到,获得积分10
20秒前
搜集达人应助马铃薯的家采纳,获得10
21秒前
22秒前
23秒前
津津发布了新的文献求助10
26秒前
笑而不语完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
丘比特应助浅陌采纳,获得10
31秒前
32秒前
诚心代芙完成签到 ,获得积分10
33秒前
33秒前
zfihead发布了新的文献求助10
34秒前
37秒前
wzh发布了新的文献求助20
40秒前
大模型应助绵绵采纳,获得10
40秒前
YY发布了新的文献求助10
44秒前
45秒前
liboshi完成签到,获得积分10
45秒前
乐乐应助wzh采纳,获得10
45秒前
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646