已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dissecting the Domains of Parkinson's Disease: Insights from Longitudinal Item Response Theory Modeling

左旋多巴 帕金森病 心理学 评定量表 原发性震颤 物理医学与康复 运动障碍 安慰剂 疾病 神经科学 医学 内科学 发展心理学 病理 替代医学
作者
Sheng Luo,Haotian Zou,Glenn T. Stebbins,Michael A. Schwarzschild,Eric A. Macklin,James Chan,David Oakes,Tanya Simuni,Christopher G. Goetz
出处
期刊:Movement Disorders [Wiley]
卷期号:37 (9): 1904-1914 被引量:11
标识
DOI:10.1002/mds.29154
摘要

ABSTRACT Background Longitudinal item response theory (IRT) models previously suggested that the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS‐UPDRS) motor examination has two salient domains, tremor and nontremor, that progress in time and in response to treatment differently. Objective Apply longitudinal IRT modeling, separating tremor and nontremor domains, to reanalyze outcomes in the previously published clinical trial (Study of Urate Elevation in Parkinson's Disease, Phase 3) that showed no overall treatment effects. Methods We applied unidimensional and multidimensional longitudinal IRT models to MDS‐UPDRS motor examination items in 298 participants with Parkinson's disease from the Study of Urate Elevation in Parkinson's Disease, Phase 3 (placebo vs. inosine) study. We separated 10 tremor items from 23 nontremor items and used Bayesian inference to estimate progression rates and sensitivity to treatment in overall motor severity and tremor and nontremor domains. Results The progression rate was faster in the tremor domain than the nontremor domain before levodopa treatment. Inosine treatment had no effect on either domain relative to placebo. Levodopa treatment was associated with greater slowing of progression in the tremor domain than the nontremor domain regardless of inosine exposure. Linear patterns of progression were observed. Despite different domain‐specific progression patterns, tremor and nontremor severities at baseline and over time were significantly correlated. Conclusions Longitudinal IRT analysis is a novel statistical method addressing limitations of traditional linear regression approaches. It is particularly useful because it can simultaneously monitor changes in different, but related, domains over time and in response to treatment interventions. We suggest that in neurological diseases with distinct impairment domains, clinical or anatomical, this application may identify patterns of change unappreciated by standard statistical methods. © 2022 International Parkinson and Movement Disorder Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助诺诺采纳,获得10
刚刚
xr完成签到 ,获得积分10
刚刚
搞怪的滑板应助hAFMET采纳,获得10
1秒前
treasure完成签到,获得积分10
1秒前
小旭不会飞完成签到,获得积分10
2秒前
ZM发布了新的文献求助10
3秒前
你好完成签到 ,获得积分0
5秒前
搞怪的滑板应助VitoLi采纳,获得30
6秒前
小二郎应助阿九采纳,获得10
6秒前
7秒前
8秒前
岁岁平安完成签到,获得积分10
8秒前
111发布了新的文献求助10
9秒前
11秒前
illi发布了新的文献求助10
15秒前
英俊的铭应助耶嘿采纳,获得10
16秒前
SYLH应助可爱的鬼神采纳,获得10
16秒前
脑洞疼应助无敌脉冲黄桃采纳,获得10
17秒前
小鱼儿完成签到,获得积分10
21秒前
ZLM发布了新的文献求助10
23秒前
狂野的凝天完成签到,获得积分10
23秒前
27秒前
完美世界应助文章多多采纳,获得10
30秒前
田様应助文章多多采纳,获得10
30秒前
王饼干完成签到,获得积分10
31秒前
32秒前
科目三应助111采纳,获得10
32秒前
幽默的溪灵应助小鱼儿采纳,获得10
32秒前
麦客完成签到,获得积分10
33秒前
35秒前
ZYH发布了新的文献求助10
36秒前
陈爱佳发布了新的文献求助10
39秒前
40秒前
41秒前
爪爪发布了新的文献求助30
45秒前
JERRI发布了新的文献求助10
46秒前
SYLH应助DrDaiJune采纳,获得10
49秒前
巧克力完成签到,获得积分20
49秒前
50秒前
授业解惑的哑铃完成签到,获得积分10
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 900
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3940416
求助须知:如何正确求助?哪些是违规求助? 3486144
关于积分的说明 11036878
捐赠科研通 3216011
什么是DOI,文献DOI怎么找? 1777626
邀请新用户注册赠送积分活动 863705
科研通“疑难数据库(出版商)”最低求助积分说明 798972