Joint Scheduling and Resource Allocation for Hierarchical Federated Edge Learning

计算机科学 上传 数学优化 调度(生产过程) 无线 作业车间调度 分布式计算 人工智能 理论计算机科学 计算机网络 数学 电信 布线(电子设计自动化) 操作系统
作者
Wanli Wen,Zihan Chen,Howard H. Yang,Wenchao Xia,Tony Q. S. Quek
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:21 (8): 5857-5872 被引量:37
标识
DOI:10.1109/twc.2022.3144140
摘要

The concept of hierarchical federated edge learning (H-FEEL) has been recently proposed as an enhancement of federated learning model. Such a system generally consists of three entities, i.e., the server, helpers, and clients, in which each helper collects the trained gradients from clients nearby, aggregates them, and sends the result to the server for global model update. Due to limited communication resources, only a portion of helpers can be scheduled to upload their aggregated gradients in each round of the model training. And that necessitates a well-designed scheme for the joint helper scheduling and communication resources allocation. In this paper, we develop a training algorithm for the H-FEEL system which involves local gradient computing, weighted gradient uploading, and machine learning model updating phases. By characterizing these phases mathematically and analyzing one-round convergence bound of the training algorithm, we formulate an optimization problem to achieve the scheduling and resource allocation scheme. The problem simultaneously captures the uncertainty of the wireless channel and the importance of the weighted gradient. To solve the problem, we first transform it into an equivalent problem and then decompose the transformed problem into two subproblems: bit and sub-channel allocation and helper scheduling , which are mixed integer nonlinear programming and continuous nonlinear problems, respectively. For the first subproblem, we obtain an optimal solution of exponential complexity and a suboptimal solution that has polynomial complexity. For the second subproblem, we obtain a closed-form optimal solution in a special case and a suboptimal solution in the general case. The efficacy of our scheme is amply demonstrated via simulations and the analytical framework is shown to provide valuable design insights for the practical implementation of the H-FEEL system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助梦梦采纳,获得10
2秒前
米玄完成签到,获得积分10
2秒前
英姑应助酷酷冰之采纳,获得10
3秒前
3秒前
4秒前
5秒前
ddd发布了新的文献求助10
5秒前
allllllll完成签到,获得积分10
7秒前
曼凡发布了新的文献求助10
7秒前
认真的梦柏完成签到,获得积分10
8秒前
嘎嘎发布了新的文献求助10
9秒前
cai完成签到,获得积分10
11秒前
烟花应助渣渣儿采纳,获得10
11秒前
dslnfakjnij完成签到 ,获得积分10
15秒前
聂先生完成签到,获得积分10
15秒前
潇潇雨歇发布了新的文献求助10
18秒前
负责幻枫发布了新的文献求助10
18秒前
哎哟我去完成签到,获得积分10
19秒前
21秒前
22秒前
丘比特应助曼凡采纳,获得10
23秒前
chen发布了新的文献求助10
25秒前
秋辞完成签到,获得积分10
27秒前
yangz发布了新的文献求助10
27秒前
哈哈哈哈哈完成签到 ,获得积分10
28秒前
31秒前
32秒前
yeape完成签到,获得积分10
32秒前
自觉觅柔发布了新的文献求助10
36秒前
37秒前
38秒前
潇潇雨歇发布了新的文献求助10
39秒前
claude发布了新的文献求助10
40秒前
狄语蕊完成签到,获得积分10
42秒前
称心曼安应助林先生采纳,获得20
43秒前
杨逸尔应助小补给卡采纳,获得10
43秒前
NJ给NJ的求助进行了留言
45秒前
所所应助123采纳,获得10
46秒前
claude完成签到,获得积分10
46秒前
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802042
求助须知:如何正确求助?哪些是违规求助? 3347816
关于积分的说明 10334961
捐赠科研通 3063858
什么是DOI,文献DOI怎么找? 1682191
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763969