亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Understanding the Lithiation/Delithiation Mechanism of Si1-XGex Alloys

阳极 材料科学 锂(药物) 商业化 电极 纳米技术 石墨 化学工程 纳米结构 工程物理 光电子学 冶金 化学 物理化学 内分泌学 工程类 医学 法学 政治学
作者
Laura C. Loaiza,Elodie Salager,Nicolas Louvain,Athmane Boulaoued,Antonella Iadecola,Patrik Johansson,Lorenzo Stievano,Vincent Seznéc,Laure Monconduit
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (3): 602-602
标识
DOI:10.1149/ma2018-01/3/602
摘要

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered e.g. by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li 22 Si 5 and 3579 mAh/g for Li 15 Si 4 , respectively 1–3 . On the other hand germanium presents a capacity of 1384 mAh/g for Li 15 Ge 4 1 , and a better electronic conductivity and Li ion diffusivity as compared to Si 4 . Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si 1-x Ge x alloys has been proven 5 , the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes 5 , but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc . There are several reports on various formulations of Si 1-x Ge x alloys with promising LIB anode performance 1,5–8 , with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si 0.5 Ge 0.5 alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder 9 . A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si 0.5 Ge 0.5 during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7 Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si 0.5 Ge 0.5 amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Li x (Si/Ge) intermediates and the crystallization of Li 15 (Si 0.5 Ge 0.5 ) 4 at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li 15+δ (Si 0.5 Ge 0.5 ) 4 was identified and related with a structural evolution of Li 15 (Si 0.5 Ge 0.5 ) 4 . Upon charge, the c-Li 15 (Si 0.5 Ge 0.5 ) 4 was transformed into a-Li x (Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-Si x Ge y was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li 15 (Si 0.5 Ge 0.5 ) 4 phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si 0.5 Ge 0.5 compared to a physical mixture of Si and Ge. 1. P. R. Abel, A. M. Chockla, Y. Lin, V. C. Holmberg, J. T. Harris, B. A. Korgel, A. Heller, C. B. Mullins and A. E. T. Al, ACS Nano , 2013, 7 , 2249–2257. 2. H. Tian, F. Xin, X. Wang, W. He and W. Han, J. Mater. , 2015, 1 , 153–169. 3. A. Touidjine, Université de Picardie Jules Verne, 2016. 4. T. Kennedy, M. Bezuidenhout, K. Palaniappan, K. Stokes, M. Brandon and K. M. Ryan, ACS Nano , 2015, 9 , 7456–7465. 5. D. Duveau, B. Fraisse, F. Cunin and L. Monconduit, Chem. Mater. , 2015, 27 , 3226–3233. 6. M. Ge, S. Kim, A. Nie, R. Shahbazian-Yassar, M. Mecklenburg, Y. Lu, X. Fang, C. Shen, J. Rong, S. Y. Park, D. S. Kim, J. Y. Kim and C. Zhou, 2015. 7. C. Yue, Y. Yu, Z. Wu, S. Sun, X. He, J. Li, L. Zhao, S. Wu, J. Li, J. Kang and L. Lin, ACS Appl. Mater. Interfaces , 2016, 6 , 7806–7810. 8. V.-P. Phan, Université de Bordeaux 1, 2010. 9. L. C. Loaiza, E. Salager, N. Louvain, A. Boulaoued, A. Iadecola, P. Johansson, L. Stievano, V. Seznec and L. Monconduit, J. Mater. Chem. A , 2017, 5 , 12462–12473.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
14秒前
科研通AI5应助DDDD采纳,获得10
27秒前
31秒前
34秒前
量子星尘发布了新的文献求助10
37秒前
DDDD发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
tt完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
诺一44发布了新的文献求助10
2分钟前
完美的书雁完成签到 ,获得积分10
2分钟前
2分钟前
AAA发布了新的文献求助10
2分钟前
科研通AI2S应助勤恳的依珊采纳,获得10
2分钟前
Zzz_Carlos完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
黯然完成签到 ,获得积分10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
吃鱼发布了新的文献求助10
4分钟前
4分钟前
吃鱼完成签到,获得积分10
4分钟前
4分钟前
酷波er应助勤恳的依珊采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865715
求助须知:如何正确求助?哪些是违规求助? 3408265
关于积分的说明 10657118
捐赠科研通 3132257
什么是DOI,文献DOI怎么找? 1727494
邀请新用户注册赠送积分活动 832338
科研通“疑难数据库(出版商)”最低求助积分说明 780220