Adaptive Regression by Mixing

估计员 数学优化 计算机科学 回归 趋同(经济学) 参数统计 核回归 非参数统计 回归分析 数学 机器学习 统计 经济 经济增长
作者
Yuhong Yang
标识
DOI:10.1198/016214501753168262
摘要

Adaptation over different procedures is of practical importance. Different procedures perform well under different conditions. In many practical situations, it is rather hard to assess which conditions are (approximately) satisfied so as to identify the best procedure for the data at hand. Thus automatic adaptation over various scenarios is desirable. A practically feasible method, named adaptive regression by mixing (ARM), is proposed to convexly combine general candidate regression procedures. Under mild conditions, the resulting estimator is theoretically shown to perform optimally in rates of convergence without knowing which of the original procedures work the best. Simulations are conducted in several settings, including comparing a parametric model with nonparametric alternatives, comparing a neural network with a projection pursuit in multidimensional regression, and combining bandwidths in kernel regression. The results clearly support the theoretical property of ARM. The ARM algorithm assigns weights on the candidate models–procedures via proper assessment of performance of the estimators. The data are split into two parts, one for estimation and the other for measuring behavior in prediction. Although there are many plausible ways to assign the weights, ARM has a connection with information theory, which ensures the desired adaptation capability. Indeed, under mild conditions, we show that the squared L2 risk of the estimator based on ARM is basically bounded above by the risk of each candidate procedure plus a small penalty term of order 1/n. Minimizing over the procedures gives the automatically optimal rate of convergence for ARM. Model selection often induces unnecessarily large variability in estimation. Alternatively, a proper weighting of the candidate models can be more stable, resulting in a smaller risk. Simulations suggest that ARM works better than model selection using Akaike or Bayesian information criteria when the error variance is not very small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浩二完成签到,获得积分10
刚刚
英勇幻姬发布了新的文献求助10
刚刚
小欧文发布了新的文献求助10
1秒前
2秒前
3秒前
小玉米完成签到 ,获得积分10
3秒前
3秒前
充电宝应助Xiaolu采纳,获得10
4秒前
浩二发布了新的文献求助30
4秒前
英勇幻姬完成签到,获得积分10
6秒前
6秒前
Henry发布了新的文献求助20
6秒前
faith发布了新的文献求助20
6秒前
le完成签到 ,获得积分20
6秒前
Hunter完成签到,获得积分20
7秒前
gy完成签到,获得积分20
7秒前
8秒前
8秒前
杨枝修喵完成签到,获得积分10
10秒前
11秒前
英姑应助stay采纳,获得10
12秒前
wl完成签到,获得积分10
12秒前
13秒前
gy发布了新的文献求助10
13秒前
狂炫AD钙奶完成签到,获得积分10
14秒前
15秒前
海荣完成签到,获得积分10
15秒前
翊嘉完成签到 ,获得积分10
16秒前
田様应助清晨的小鹿采纳,获得10
16秒前
lbw发布了新的文献求助10
16秒前
缥缈的魔镜完成签到 ,获得积分10
17秒前
18秒前
Seng发布了新的文献求助10
19秒前
CodeCraft应助LIANG采纳,获得20
19秒前
英姑应助dicpaccn采纳,获得10
19秒前
随意了么完成签到,获得积分10
20秒前
欢呼的未来完成签到 ,获得积分10
20秒前
luan完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Absent Here 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347751
求助须知:如何正确求助?哪些是违规求助? 3853822
关于积分的说明 12028741
捐赠科研通 3495576
什么是DOI,文献DOI怎么找? 1917953
邀请新用户注册赠送积分活动 960764
科研通“疑难数据库(出版商)”最低求助积分说明 860524