Electric field encephalography for brain activity monitoring

脑电图 脑-机接口 计算机科学 模态(人机交互) 信号(编程语言) 噪音(视频) 公制(单位) 信噪比(成像) 频道(广播) 接口(物质) 人工智能 模式识别(心理学) 计算机视觉 电信 神经科学 最大气泡压力法 气泡 经济 图像(数学) 并行计算 生物 程序设计语言 运营管理
作者
Craig Versek,T Frasca,Jianlin Zhou,Kaushik Chowdhury,Srinivas Sridhar
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:15 (4): 046027-046027 被引量:7
标识
DOI:10.1088/1741-2552/aac3f9
摘要

We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG.We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2 cm × 2 cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state visually evoked potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies.We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute-though these preliminary results are likely sensitive to inter-subject variations and choice of scalp locations, so require further investigation.Enhancement of ssVEP SNR using EFEG has the potential to improve visually based BCIs and diagnostic paradigms. The time domain analysis of tVEPF signals shows robust features in the electric field components that might have clinical relevance beyond classical VEP approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shiku完成签到,获得积分10
1秒前
衣蝉完成签到 ,获得积分10
2秒前
heihei发布了新的文献求助10
4秒前
4秒前
wanci应助cang采纳,获得10
4秒前
7秒前
Ayan完成签到,获得积分10
10秒前
10秒前
ccm应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
leaolf应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Sigramm应助科研通管家采纳,获得10
11秒前
咩咩应助科研通管家采纳,获得10
11秒前
周周应助科研通管家采纳,获得10
11秒前
开心浩阑应助科研通管家采纳,获得20
11秒前
11秒前
ttt完成签到,获得积分10
13秒前
14秒前
opus17完成签到,获得积分10
15秒前
aloopp完成签到,获得积分10
16秒前
承允完成签到,获得积分10
17秒前
立冬完成签到,获得积分10
17秒前
cang发布了新的文献求助10
19秒前
jerry完成签到,获得积分10
19秒前
取名叫做利完成签到,获得积分10
20秒前
烟花应助aloopp采纳,获得10
20秒前
整齐乐驹完成签到,获得积分10
20秒前
wanci应助Sunshine采纳,获得10
23秒前
一一完成签到,获得积分10
24秒前
英姑应助开心人达采纳,获得10
27秒前
华新完成签到,获得积分10
27秒前
北沐城歌应助cang采纳,获得10
27秒前
julien完成签到,获得积分10
28秒前
左左右右完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4631486
求助须知:如何正确求助?哪些是违规求助? 4028353
关于积分的说明 12464447
捐赠科研通 3714431
什么是DOI,文献DOI怎么找? 2049289
邀请新用户注册赠送积分活动 1080992
科研通“疑难数据库(出版商)”最低求助积分说明 963428