已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distance-based and RKHS-based dependence metrics in high dimension

数学 协方差 学生化范围 距离相关 样本量测定 维数(图论) 统计 应用数学 核希尔伯特再生空间 协方差矩阵 独立性(概率论) 希尔伯特空间 数学分析 组合数学 随机变量 标准差
作者
Changbo Zhu,Xianyang Zhang,Shun Yao,Xiaofeng Shao
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:48 (6) 被引量:42
标识
DOI:10.1214/19-aos1934
摘要

In this paper, we study distance covariance, Hilbert–Schmidt covariance (aka Hilbert–Schmidt independence criterion [In Advances in Neural Information Processing Systems (2008) 585–592]) and related independence tests under the high dimensional scenario. We show that the sample distance/Hilbert–Schmidt covariance between two random vectors can be approximated by the sum of squared componentwise sample cross-covariances up to an asymptotically constant factor, which indicates that the standard distance/Hilbert–Schmidt covariance based test can only capture linear dependence in high dimension. Under the assumption that the components within each high dimensional vector are weakly dependent, the distance correlation based $t$ test developed by Székely and Rizzo (J. Multivariate Anal. 117 (2013) 193–213) for independence is shown to have trivial limiting power when the two random vectors are nonlinearly dependent but component-wisely uncorrelated. This new and surprising phenomenon, which seems to be discovered and carefully studied for the first time, is further confirmed in our simulation study. As a remedy, we propose tests based on an aggregation of marginal sample distance/Hilbert–Schmidt covariances and show their superior power behavior against their joint counterparts in simulations. We further extend the distance correlation based $t$ test to those based on Hilbert–Schmidt covariance and marginal distance/Hilbert–Schmidt covariance. A novel unified approach is developed to analyze the studentized sample distance/Hilbert–Schmidt covariance as well as the studentized sample marginal distance covariance under both null and alternative hypothesis. Our theoretical and simulation results shed light on the limitation of distance/Hilbert–Schmidt covariance when used jointly in the high dimensional setting and suggest the aggregation of marginal distance/Hilbert–Schmidt covariance as a useful alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟尘发布了新的文献求助10
3秒前
ppp发布了新的文献求助10
4秒前
5秒前
10秒前
思绪摸摸头完成签到 ,获得积分10
10秒前
18秒前
19秒前
可爱的函函应助埃斯基馍采纳,获得10
21秒前
小白完成签到 ,获得积分10
22秒前
25秒前
27秒前
YYY完成签到 ,获得积分10
28秒前
小白应助非而者厚采纳,获得30
28秒前
29秒前
刘婷发布了新的文献求助10
29秒前
31秒前
图图发布了新的文献求助30
31秒前
善学以致用应助JianminLuo采纳,获得10
33秒前
Rjy发布了新的文献求助10
34秒前
35秒前
彭于晏应助妮妮采纳,获得10
36秒前
无解完成签到,获得积分10
41秒前
43秒前
43秒前
jacob258完成签到 ,获得积分10
45秒前
陈甸甸完成签到 ,获得积分10
46秒前
46秒前
48秒前
一只菠萝包完成签到 ,获得积分10
49秒前
lizhiqian2024发布了新的文献求助10
49秒前
49秒前
LanXiaohong完成签到,获得积分10
51秒前
chengmin发布了新的文献求助10
51秒前
觅柔完成签到,获得积分10
51秒前
lrl发布了新的文献求助10
52秒前
与一完成签到 ,获得积分10
53秒前
落后凝莲完成签到,获得积分10
55秒前
58秒前
CodeCraft应助chengmin采纳,获得10
58秒前
希望天下0贩的0应助zorn采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782489
求助须知:如何正确求助?哪些是违规求助? 3327940
关于积分的说明 10233824
捐赠科研通 3042909
什么是DOI,文献DOI怎么找? 1670301
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758904