Distance-based and RKHS-based dependence metrics in high dimension

数学 协方差 学生化范围 距离相关 样本量测定 维数(图论) 统计 应用数学 核希尔伯特再生空间 协方差矩阵 独立性(概率论) 希尔伯特空间 数学分析 组合数学 随机变量 标准差
作者
Changbo Zhu,Xianyang Zhang,Shun Yao,Xiaofeng Shao
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:48 (6) 被引量:42
标识
DOI:10.1214/19-aos1934
摘要

In this paper, we study distance covariance, Hilbert–Schmidt covariance (aka Hilbert–Schmidt independence criterion [In Advances in Neural Information Processing Systems (2008) 585–592]) and related independence tests under the high dimensional scenario. We show that the sample distance/Hilbert–Schmidt covariance between two random vectors can be approximated by the sum of squared componentwise sample cross-covariances up to an asymptotically constant factor, which indicates that the standard distance/Hilbert–Schmidt covariance based test can only capture linear dependence in high dimension. Under the assumption that the components within each high dimensional vector are weakly dependent, the distance correlation based $t$ test developed by Székely and Rizzo (J. Multivariate Anal. 117 (2013) 193–213) for independence is shown to have trivial limiting power when the two random vectors are nonlinearly dependent but component-wisely uncorrelated. This new and surprising phenomenon, which seems to be discovered and carefully studied for the first time, is further confirmed in our simulation study. As a remedy, we propose tests based on an aggregation of marginal sample distance/Hilbert–Schmidt covariances and show their superior power behavior against their joint counterparts in simulations. We further extend the distance correlation based $t$ test to those based on Hilbert–Schmidt covariance and marginal distance/Hilbert–Schmidt covariance. A novel unified approach is developed to analyze the studentized sample distance/Hilbert–Schmidt covariance as well as the studentized sample marginal distance covariance under both null and alternative hypothesis. Our theoretical and simulation results shed light on the limitation of distance/Hilbert–Schmidt covariance when used jointly in the high dimensional setting and suggest the aggregation of marginal distance/Hilbert–Schmidt covariance as a useful alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的猪发布了新的文献求助10
刚刚
研究生发布了新的文献求助10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
热心一一完成签到 ,获得积分10
5秒前
优美不惜完成签到,获得积分10
5秒前
6秒前
一一应助健壮的怜烟采纳,获得10
6秒前
7秒前
wj完成签到 ,获得积分10
7秒前
EuniceMGuo发布了新的文献求助100
7秒前
7秒前
MJ发布了新的文献求助30
7秒前
8秒前
9秒前
旺仔大馒头完成签到,获得积分10
10秒前
10秒前
lg777完成签到,获得积分10
10秒前
kdby完成签到,获得积分10
11秒前
ziyue发布了新的文献求助10
11秒前
11秒前
点金石完成签到,获得积分10
11秒前
哪位完成签到,获得积分10
11秒前
12秒前
你的风筝应助N型半导体采纳,获得10
12秒前
orixero应助N型半导体采纳,获得10
12秒前
鲤鱼灵竹发布了新的文献求助10
13秒前
重要忆丹发布了新的文献求助10
13秒前
高贵熊猫应助沉静的蜗牛采纳,获得20
13秒前
anan完成签到,获得积分10
14秒前
14秒前
MJ完成签到,获得积分10
15秒前
15秒前
emxzemxz发布了新的文献求助20
17秒前
ziyue完成签到,获得积分10
17秒前
胡振豪发布了新的文献求助30
17秒前
yinying发布了新的文献求助10
17秒前
Zack发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
“animal - derived protein extraction separation”,“animal - derived protein structure identification”,“animal - derived protein activity” 520
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4274594
求助须知:如何正确求助?哪些是违规求助? 3803726
关于积分的说明 11919277
捐赠科研通 3450561
什么是DOI,文献DOI怎么找? 1892156
邀请新用户注册赠送积分活动 942991
科研通“疑难数据库(出版商)”最低求助积分说明 846724