Portfolio formation with preselection using deep learning from long-term financial data

夏普比率 投资组合优化 计算机科学 文件夹 投资组合收益率 计量经济学 自回归模型 期限(时间) 项目组合管理 水准点(测量) 股票市场指数 现代投资组合理论 资产配置 财务 经济 股票市场 物理 生物 古生物学 量子力学 项目管理 管理 大地测量学 地理
作者
Wuyu Wang,Weizi Li,Ning Zhang,Kecheng Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:143: 113042-113042 被引量:142
标识
DOI:10.1016/j.eswa.2019.113042
摘要

Portfolio theory is an important foundation for portfolio management which is a well-studied subject yet not fully conquered territory. This paper proposes a mixed method consisting of long short-term memory networks and mean-variance model for optimal portfolio formation in conjunction with the asset preselection, in which long-term dependences of financial time-series data can be captured. The experiment uses a large volume of sample data from the UK Stock Exchange 100 Index between March 1994 and March 2019. In the first stage, long short-term memory networks are used to forecast the return of assets and select assets with higher potential returns. After comparing the outcomes of the long short-term memory networks against support vector machine, random forest, deep neural networks, and autoregressive integrated moving average model, we discover that long short-term memory networks are appropriate for financial time-series forecasting, to beat the other benchmark models by a very clear margin. In the second stage, based on selected assets with higher returns, the mean-variance model is applied for portfolio optimisation. The validation of this methodology is carried out by comparing the proposed model with the other five baseline strategies, to which the proposed model clearly outperforms others in terms of the cumulative return per year, Sharpe ratio per triennium as well as average return to the risk per month of each triennium. i.e. potential returns and risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jackeyYuu完成签到,获得积分10
刚刚
pccviyo完成签到,获得积分10
1秒前
一玮完成签到 ,获得积分10
1秒前
2秒前
2哇哇哇完成签到,获得积分20
2秒前
Mikasaaaaa发布了新的文献求助10
4秒前
冰霜雨露完成签到 ,获得积分10
4秒前
如意枫叶发布了新的文献求助10
4秒前
5秒前
CipherSage应助Dr.V采纳,获得10
5秒前
果冻完成签到,获得积分10
7秒前
7秒前
7秒前
Owen应助山槐采纳,获得10
7秒前
8秒前
8秒前
糖桔完成签到 ,获得积分10
9秒前
李爱国应助zhiyu采纳,获得10
9秒前
12秒前
刘球球发布了新的文献求助10
12秒前
12秒前
学术cheems发布了新的文献求助10
12秒前
KK发布了新的文献求助10
12秒前
13秒前
13秒前
小蘑菇应助王炎欣采纳,获得10
13秒前
Kirito给tian的求助进行了留言
14秒前
高兴发箍发布了新的文献求助10
15秒前
Huanghh发布了新的文献求助10
16秒前
16秒前
慕青应助NJUSTJAY采纳,获得10
17秒前
研友_V8RDYn完成签到,获得积分10
17秒前
SYLH应助YJ采纳,获得10
18秒前
世界第一大庸医完成签到,获得积分10
19秒前
19秒前
田様应助冬嘉采纳,获得10
20秒前
何茂郎发布了新的文献求助10
21秒前
lisa43关注了科研通微信公众号
22秒前
Huanghh完成签到,获得积分10
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052192
求助须知:如何正确求助?哪些是违规求助? 3590221
关于积分的说明 11410234
捐赠科研通 3316858
什么是DOI,文献DOI怎么找? 1824376
邀请新用户注册赠送积分活动 896106
科研通“疑难数据库(出版商)”最低求助积分说明 817198