Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach

人工智能 卷积神经网络 脑电图 计算机科学 深度学习 重性抑郁障碍 模式识别(心理学) 生物标志物 神经科学 机器学习 认知 心理学 生物 生物化学
作者
Çağlar Uyulan,Türker Tekin Erguzel,Hüseyin Ünübol,Merve Çebi,Gökben Hızlı Sayar,Mahdi Nezhad Asad,Nevzat Tarhan
出处
期刊:Clinical Eeg and Neuroscience [SAGE Publishing]
卷期号:52 (1): 38-51 被引量:118
标识
DOI:10.1177/1550059420916634
摘要

The human brain is characterized by complex structural, functional connections that integrate unique cognitive characteristics. There is a fundamental hurdle for the evaluation of both structural and functional connections of the brain and the effects in the diagnosis and treatment of neurodegenerative diseases. Currently, there is no clinically specific diagnostic biomarker capable of confirming the diagnosis of major depressive disorder (MDD). Therefore, exploring translational biomarkers of mood disorders based on deep learning (DL) has valuable potential with its recently underlined promising outcomes. In this article, an electroencephalography (EEG)-based diagnosis model for MDD is built through advanced computational neuroscience methodology coupled with a deep convolutional neural network (CNN) approach. EEG recordings are analyzed by modeling 3 different deep CNN structure, namely, ResNet-50, MobileNet, Inception-v3, in order to dichotomize MDD patients and healthy controls. EEG data are collected for 4 main frequency bands (Δ, θ, α, and β, accompanying spatial resolution with location information by collecting data from 19 electrodes. Following the pre-processing step, different DL architectures were employed to underline discrimination performance by comparing classification accuracies. The classification performance of models based on location data, MobileNet architecture generated 89.33% and 92.66% classification accuracy. As to the frequency bands, delta frequency band outperformed compared to other bands with 90.22% predictive accuracy and area under curve (AUC) value of 0.9 for ResNet-50 architecture. The main contribution of the study is the delineation of distinctive spatial and temporal features using various DL architectures to dichotomize 46 MDD subjects from 46 healthy subjects. Exploring translational biomarkers of mood disorders based on DL perspective is the main focus of this study and, though it is challenging, with its promising potential to improve our understanding of the psychiatric disorders, computational methods are highly worthy for the diagnosis process and valuable in terms of both speed and accuracy compared with classical approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
LIU完成签到,获得积分10
3秒前
流雲发布了新的文献求助10
3秒前
5秒前
研友_qZ6rGZ发布了新的文献求助10
6秒前
ccai发布了新的文献求助10
8秒前
9秒前
emberflow完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
执着中道发布了新的文献求助30
16秒前
机密塔发布了新的文献求助10
16秒前
17秒前
jyq发布了新的文献求助10
18秒前
zhaliang发布了新的文献求助10
18秒前
LeKuai发布了新的文献求助10
19秒前
科研通AI5应助myuniv采纳,获得10
20秒前
20秒前
亦玉发布了新的文献求助10
20秒前
ding应助小林采纳,获得10
21秒前
22秒前
22秒前
22秒前
22秒前
25秒前
在水一方应助流雲采纳,获得10
25秒前
26秒前
27秒前
27秒前
科研通AI6应助lsiah采纳,获得10
27秒前
小丸子发布了新的文献求助30
28秒前
刘荣圣发布了新的文献求助10
28秒前
欣喜的雪青完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215037
求助须知:如何正确求助?哪些是违规求助? 3749427
关于积分的说明 11794186
捐赠科研通 3415484
什么是DOI,文献DOI怎么找? 1874436
邀请新用户注册赠送积分活动 928521
科研通“疑难数据库(出版商)”最低求助积分说明 837659