亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The role of MRI texture analysis based on susceptibility-weighted imaging in predicting Fuhrman grade of clear cell renal cell carcinoma

医学 接收机工作特性 逻辑回归 置信区间 肾透明细胞癌 肾细胞癌 分级(工程) 磁共振成像 放射科 曲线下面积 核医学 内科学 土木工程 工程类
作者
Jun Sun,Pan Liang,Tingting Zha,Wei Xing,Jie Chen,Shaofeng Duan
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:62 (8): 1104-1111 被引量:11
标识
DOI:10.1177/0284185120951964
摘要

Background The Fuhrman nuclear grade system is one of the most important independent indicators in patients with clear cell renal cell carcinoma (ccRCC) for aggressiveness and prognosis. Preoperative assessment of tumor aggressiveness is important for surgical decision-making. Purpose To explore the role of magnetic resonance imaging (MRI) texture analysis based on susceptibility-weighted imaging (SWI) in predicting Fuhrman grade of ccRCC. Material and Methods A total of 45 patients with SWI and surgically proven ccRCC were divided into two groups: the low-grade group (Fuhrman I/II, n = 29) and the high-grade group (Fuhrman III/IV, n = 16). Texture features were extracted from SWI images. Feature selection was performed, and multivariable logistic regression analysis was performed to develop the SWI-based texture model for grading ccRCCs. Receiver operating characteristic (ROC) curve analysis and leave-group-out cross-validation (LGOCV) were performed to test the reliability of the model. Results A total of 396 SWI-based texture features were extracted from each SWI image. The SWI-based texture model developed by multivariable logistic regression analysis was: SWIscore = –0.59 + 1.60 * ZonePercentage. The area under the ROC curve of the SWI-based texture model for differentiating high-grade ccRCC from low-grade ccRCC was 0.81 (95% confidence interval 0.67–0.94), with 80% accuracy, 56.25% sensitivity, and 93.10% specificity. After 100 LGOCVs, the mean accuracy, sensitivity, and specificity were 90.91%, 91.83%, and 89.89% for the training sets, and 77.29%, 80.52%, and 71.44% for the test sets, respectively. Conclusion SWI-based texture analysis might be a reliable quantitative approach for differentiating high-grade ccRCC from low-grade ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿乌大王完成签到,获得积分10
1秒前
1秒前
聆琳发布了新的文献求助20
1秒前
7秒前
SciGPT应助Jaaay采纳,获得10
8秒前
8秒前
10秒前
14秒前
111发布了新的文献求助10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
Dravia应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
17秒前
22秒前
科研通AI5应助北方采纳,获得10
24秒前
wongcong发布了新的文献求助10
24秒前
27秒前
潇洒的马里奥完成签到,获得积分10
27秒前
111完成签到,获得积分20
27秒前
28秒前
32秒前
小枣完成签到 ,获得积分10
34秒前
35秒前
36秒前
深情的阿宇完成签到,获得积分10
38秒前
木子李应助111采纳,获得10
38秒前
感性的芹菜完成签到,获得积分10
38秒前
40秒前
42秒前
璟黎发布了新的文献求助10
43秒前
44秒前
霸气凝云完成签到 ,获得积分10
45秒前
稚久发布了新的文献求助10
47秒前
50秒前
53秒前
墙头的草发布了新的文献求助10
58秒前
1分钟前
zzzzz发布了新的文献求助10
1分钟前
墙头的草完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111552
求助须知:如何正确求助?哪些是违规求助? 3649855
关于积分的说明 11559655
捐赠科研通 3354942
什么是DOI,文献DOI怎么找? 1843142
邀请新用户注册赠送积分活动 909251
科研通“疑难数据库(出版商)”最低求助积分说明 826061