Machine learning based models for pressure drop estimation of two-phase adiabatic air-water flow in micro-finned tubes: Determination of the most promising dimensionless feature set

无量纲量 压力降 雷诺数 管道(软件) 水准点(测量) 两相流 机械 流量(数学) 绝热过程 计算机科学 形状因子 算法 材料科学 数学 工程类 机械工程 热力学 物理 地质学 几何学 大地测量学 湍流
作者
Behzad Najafi,Keivan Ardam,Andrej Hanušovský,Fabio Rinaldi,Luigi Pietro Maria Colombo
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:167: 252-267 被引量:22
标识
DOI:10.1016/j.cherd.2021.01.002
摘要

The present study is focused on determining the most promising set of dimensionless features and the optimal machine learning algorithm that can be employed for data-driven frictional pressure drop estimation of water (single-phase) and air-water mixture (two-phase) flow in micro-finned horizontal tubes. Accordingly, an experimental activity is first conducted, in which the frictional pressure drop of both water and air-water flows, at various flow conditions, is measured. Next, machine learning based pipelines are developed, in which dimensionless parameters are provided as features and the friction factor (for the single-phase case) and the two-phase flow multipliers (for the two-phase case) are considered as the targets. Next, the feature selection procedure is performed, in which the most promising set of features, while employing a benchmark algorithm, is determined. An algorithm optimization procedure is then performed in order to choose the most suitable algorithm (and the corresponding tuning parameters) that lead to the highest possible accuracy. Moreover, the state-of-the-art physical models are implemented and the corresponding accuracy, while being applied to the experimentally obtained dataset, is determined. It is demonstrated that only 5 dimensionless features are selected (among 23 provided features) in the obtained pipeline developed for the estimation of the two-phase gas multiplier (in the extraction procedure of which, the single-phase friction factors are determined only using the Reynolds number and two geometrical parameters). Therefore, the latter procedures notably reduce the complexity of the model, while providing a higher accuracy (MARD of 6.72% and 7.05% on the training and test sets respectively) compared to the one achieved using the most promising available physical model (MARD of 15.21%). Finally, through implementing the forward feature combination strategy on the optimal pipeline, the contribution of each feature to the achieved accuracy is shown and the trade-off between the model's complexity (number of features) and the obtained accuracy is presented. Thus, the latter step provides the possibility of utilizing an even inferior number of features, while achieving an acceptable accuracy. Moreover, since these pipelines will be made publicly accessible, the implemented models also offer a higher reproducibility and ease of use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助甜甜圈采纳,获得10
刚刚
ozzz发布了新的文献求助10
刚刚
JC完成签到,获得积分10
1秒前
科研通AI5应助vnb采纳,获得10
2秒前
tanglu发布了新的文献求助10
3秒前
顾矜应助胡图图采纳,获得10
3秒前
传奇3应助畅快厉采纳,获得10
3秒前
lily完成签到,获得积分10
4秒前
4秒前
公孙玲珑发布了新的文献求助10
6秒前
机智的誉完成签到,获得积分10
6秒前
徐淇淇完成签到 ,获得积分10
7秒前
8秒前
9秒前
眼药水发布了新的文献求助20
9秒前
甜甜圈完成签到,获得积分10
9秒前
欢呼的茗茗完成签到 ,获得积分10
9秒前
10秒前
幽默鹭洋发布了新的文献求助10
11秒前
11秒前
夏天的风完成签到,获得积分10
11秒前
12秒前
甜甜圈发布了新的文献求助10
13秒前
14秒前
畅快厉完成签到,获得积分10
14秒前
15秒前
16秒前
wzy5508完成签到 ,获得积分10
16秒前
16秒前
白玉元宵完成签到,获得积分10
17秒前
17秒前
轻松的贞发布了新的文献求助10
18秒前
都是发布了新的文献求助10
19秒前
sfy66666发布了新的文献求助10
20秒前
gcc发布了新的文献求助10
20秒前
zhy发布了新的文献求助10
20秒前
畅快厉发布了新的文献求助10
21秒前
高大以南完成签到,获得积分10
21秒前
CipherSage应助科研通管家采纳,获得30
21秒前
21秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848737
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568043
捐赠科研通 3112141
什么是DOI,文献DOI怎么找? 1715101
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647